Sequential quadratic programming enhanced backtracking search algorithm  被引量:1

Sequential quadratic programming enhanced backtracking search algorithm

在线阅读下载全文

作  者:Wenting ZHAO Lijin WANG Yilong YIN Bingqing WANG Yuchun TANG 

机构地区:[1]School of Computer Science and Technology, Shandong University, Jinan 250101, China [2]College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China [3]Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan 250012, China

出  处:《Frontiers of Computer Science》2018年第2期316-330,共15页中国计算机科学前沿(英文版)

基  金:Acknowledgements This work was supported by the NSFC-Guangdong Joint Fund (U1201258), the National Natural Science Foundation of China (Grant No. 61573219), the Shandong Natural Science Funds for Distinguished Young Scholars (JQ201316), the Fundamental Research Funds of Shandong University (2014JC028), and the Natural Science Foundation of Fujian Province of China (2016J01280).

摘  要:In this paper, we propose a new hybrid method called SQPBSA which combines backtracking search optimization algorithm (BSA) and sequential quadratic programming (SQP). BSA, as an exploration search engine, gives a good direction to the global optimal region, while SQP is used as a local search technique to exploit the optimal solution. The experiments are carried on two suits of 28 functions proposed in the CEC-2013 competitions to verify the performance of SQPBSA. The results indicate the proposed method is effective and competitive.In this paper, we propose a new hybrid method called SQPBSA which combines backtracking search optimization algorithm (BSA) and sequential quadratic programming (SQP). BSA, as an exploration search engine, gives a good direction to the global optimal region, while SQP is used as a local search technique to exploit the optimal solution. The experiments are carried on two suits of 28 functions proposed in the CEC-2013 competitions to verify the performance of SQPBSA. The results indicate the proposed method is effective and competitive.

关 键 词:numerical optimization backtracking search algorithm sequential quadratic programming local search 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP301.6[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象