考虑后悔行为的变权可变模糊旅游安全预警方法  被引量:8

Variable weight variable fuzzy tourism safety early warning considering regret behavior

在线阅读下载全文

作  者:罗景峰[1,2] 李登峰 LUO Jingfeng1,2, LI Dengfeng3(1 College of Tourism, Huaqiao University, Quanzhou Fujian 362021, China ;2 School of Economics and Management, Fuzhou University, Fuzhou Fujian 350108, Chin)

机构地区:[1]华侨大学旅游学院,福建泉州362021 [2]福州大学经济与管理学院,福建福州350108

出  处:《中国安全科学学报》2018年第1期161-166,共6页China Safety Science Journal

基  金:福建省社科规划项目(FJ2015B217);中国博士后科学基金资助(2015M582028)

摘  要:为弥补传统预警方法未考虑评价者行为和采用常权方法的不足,提出考虑后悔行为的变权可变模糊旅游安全预警方法。为此,首先根据样本数据及常权向量,构造各预警样本的变权向量;然后,计算变权向量相对于常权向量的后悔值、欣喜值,并根据其调整变权向量;结合集对分析-可变模糊模型,计算各预警样本的分级特征值;以二元语义方法确定旅游安全预警级别和阈值;最后,将该方法应用于实例并进行分析。结果表明:用该方法得到的预警结果与实际情况相符。To cover the shortage that conventional early warning method didn't take evaluator behavior or defect of constant weights method into account,a variable weight variable fuzzy early warning method considering regret behavior was presented. For developing the method,variable weight vectors of early warning sample were constructed on the basis of both the sample data and the constant weight vectors.Then,initial weight was chosen as the reference point,and the variable weight vectors were transformed into the regret values and rejoice values relative to the reference point,and the variable weights were adjusted according to the regret value and rejoice value. Next,the rank feature values of early warning samples were calculated with the aid of the set pair analysis-variable fuzzy model. Again,grade of early warning and threshold were determined using the 2-tuple linguistic method. Finally,the method was used for analyzing a certain rural tourism destination taken as an example. This research shows the early warning results obtained by using the method accord closely with the actual situation.

关 键 词:后悔行为 变权 可变模糊 旅游安全 预警 二元语义方法 

分 类 号:X913.4[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象