基于MEMS加速度传感器的轴承故障检测  被引量:2

Bearing Fault Detection Based on MEMS Acceleration Sensor

在线阅读下载全文

作  者:张毅[1] ZHANG Yi(Department of Electronic Information and Physics Changzhi University, Changzhi Shanxi 046011, Chin)

机构地区:[1]长治学院电子信息与物理系

出  处:《电子器件》2017年第6期1550-1555,共6页Chinese Journal of Electron Devices

基  金:长治学院科研课题项目(2013203)

摘  要:提出了一种通过利用低成本的MEMS加速度传感器进行振动分析,实现检测电动机深沟球轴承多重故障的简易方法。首先分析了轴承多故障特征频率,然后通过快速傅里叶变换算法对轴承出现故障的电动机振动频率进行了分析,从振动频谱中提取故障频率来诊断轴承多重故障的存在。同时,基频分量周围的边带频率分量表明由于故障轴承存在空气间隙。在空载、单相以及失衡电压条件下通过实验对提出的方法进行了研究,结果显示提取出的故障频率与理论值两者十分接近,表明提出的方法能够有效检测并识别出感应电动机的多故障特征。A vibration analysis by using MEMS acceleration sensor with low cost, simple method is proposed for the detection of multiple faults of motor of deep groove ball bearing. The bearing fault characteristic frequency is first analyzed. Then by means of the fast Fourier transform algorithm on bearing appears fault of motor vibration frequency were analyzed. From the vibration spectrum extraction of fault frequency to diagnose multiple faults in bearings. At the same time, the fundamental frequency component around the sideband frequency components shows that the fault exists in the bearing air gaps. Under no load, the single-phase voltage unbalance conditions through experiments on the proposed method had been studied. The results show that the extracted fault frequency and theoretical value both are very close to, which show that the proposed method can effectively detect and identify the multi fault characteristic of the induction motor.

关 键 词:快速傅里叶变换算法 MEMS加速度传感器 故障检测 振动特征分析 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象