检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Acta Mathematica Scientia》2018年第2期651-672,共22页数学物理学报(B辑英文版)
基 金:partially supported by NNSF of China(11571126,11701198);China Postdoctoral Science Foundation funded project(2017M622397)
摘 要:This article is concerned with the existence of global attractor of a weakly dissipative generalized two-component μ-Hunter-Saxton (gμHS2) system with viscous terms. Under the period boundary conditions and with the help of the Galerkin procedure and compactness method, we first investigate the existence of global solution for the viscous weakly dissipative (gμHS2) system. On the basis of some uniformly prior estimates of the solution to the viscous weakly dissipative (gμHS2) system, we show that the semi-group of the solution operator {S(t)}t≥0 has a bounded absorbing set. Moreover, we prove that the dynamical system {S(t)}t≥0 possesses a global attractor in the Sobolev space H2(S) × H2(S).This article is concerned with the existence of global attractor of a weakly dissipative generalized two-component μ-Hunter-Saxton (gμHS2) system with viscous terms. Under the period boundary conditions and with the help of the Galerkin procedure and compactness method, we first investigate the existence of global solution for the viscous weakly dissipative (gμHS2) system. On the basis of some uniformly prior estimates of the solution to the viscous weakly dissipative (gμHS2) system, we show that the semi-group of the solution operator {S(t)}t≥0 has a bounded absorbing set. Moreover, we prove that the dynamical system {S(t)}t≥0 possesses a global attractor in the Sobolev space H2(S) × H2(S).
关 键 词:Generalized two-component μ-Hunter-Saxton system viscous weakly dissipative existence global attractor period boundary conditions
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15