A Soft Bionic Gripper with Variable Effective Length  被引量:17

A Soft Bionic Gripper with Variable Effective Length

在线阅读下载全文

作  者:Yufei Hao Zheyuan Gong Zhexin Xie Shaoya Guan Xingbang Yang Tianmiao Wang Li Wen 

机构地区:[1]School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China [2]School of Biological Science and Medical Engineering, Beihang University, Beijing 1 00191, China [3]Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China

出  处:《Journal of Bionic Engineering》2018年第2期220-235,共16页仿生工程学报(英文版)

基  金:Acknowledgment This work was supported by the National Science Foundation support projects, China (grant numbers 61633004, 61403012, and 61333016); the Open Research Fund of Key Laboratory Space Utilization, Chinese Academy of Sciences (No.6050000201607004). Many thanks to Ziyu Ren and Hui Wang for their kind help in implementing the experimental apparatus, con- ducting the force experiments and performing the data analysis. Thanks to Xi Fang for her kind help in revising the paper.

摘  要:This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measurements, the deformation of the single soft actuator as a function of air pressure input in free space was analyzed. To investigate the effect of the effective actuator length on the gripping per- formance of the gripper, we conducted systematical experiments to evaluate the pull-off force, the actuation speed, the precision and error tolerance of the soft gripper while grasping objects of various sizes and shapes. A combination of depressurization and pressurization in actuation as well as applying variable effective actuator length enhanced the gripper's performance significantly, with no sensors. For example, with tunable effective actuator length, the gripper was able to grasp objects ranging from 2 mm 170 mm robustly. Under the optimal length, the gripper could generate the maximum pull-off force for the corresponding object size; the precision and the error tolerance of the gripper were also significantly improved compared to those of the gripper with full-length. Our soft robotic prototype exhibits a simple control and low-cost approach of gripping a wide range of objects and may have wide leverage for future industrial operations.This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measurements, the deformation of the single soft actuator as a function of air pressure input in free space was analyzed. To investigate the effect of the effective actuator length on the gripping per- formance of the gripper, we conducted systematical experiments to evaluate the pull-off force, the actuation speed, the precision and error tolerance of the soft gripper while grasping objects of various sizes and shapes. A combination of depressurization and pressurization in actuation as well as applying variable effective actuator length enhanced the gripper's performance significantly, with no sensors. For example, with tunable effective actuator length, the gripper was able to grasp objects ranging from 2 mm 170 mm robustly. Under the optimal length, the gripper could generate the maximum pull-off force for the corresponding object size; the precision and the error tolerance of the gripper were also significantly improved compared to those of the gripper with full-length. Our soft robotic prototype exhibits a simple control and low-cost approach of gripping a wide range of objects and may have wide leverage for future industrial operations.

关 键 词:soft robotics pneumatic control soft bionic gripper variable effective actuator length 

分 类 号:TB39[一般工业技术—材料科学与工程] TU375.4[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象