检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴涛[1] 商景诚 何兴道[1] 杨传音 Wu Tao Shang Jing-Cheng He Xing-Dao Yang Chuan-Yin(Jiangxi Engineering Laboratory for Optoelectronic Testing Technology, National Engineering Laboratory for Non Destructive Testing and Optoelectronic Sensing Technology and Application, Nanchang Hangkong University, Nanchang 330063, Chin)
机构地区:[1]南昌航空大学,江西省光电检测技术工程实验室,无损检测与光电传感技术及应用国家地方联合工程实验室,南昌330063
出 处:《物理学报》2018年第7期262-269,共8页Acta Physica Sinica
基 金:国家自然科学基金(批准号:41665001,61177096)、航空科学基金(批准号:2015ZC56006)和江西省研究生创新专项资金(批准号:YC2017-$337)资助的课题.
摘 要:体黏滞系数是从微观角度认识气体分子黏滞性的重要参数,传统的兆赫兹声频范围的声波吸收方法无法直接应用于声波弛豫效应在千兆赫兹范围的高频领域,而瑞利-布里渊散射则能实现对声波弛豫效应在千兆赫兹的气体体黏滞系数的测量.本文测量了532 nm激光激发的常温下压强分别为1-9 bar的氮气的自发瑞利-布里渊散射光谱,利用已知温度和压强的理论模型对测量光谱进行了比较,获得了准确的散射角.利用该散射角并结合χ~2值最小原理反演得到不同压强(4—9 bar)下氮气的平均体黏滞系数为(1.46±0.14)×10^(-5)kg·m^(-1)·s^(-1),该结果与文献中利用自发瑞利-布里渊散射获得的结果和理论计算结果相近,但与相干瑞利-布里渊散射的测量结果相差明显.利用该平均体黏滞系数对氮气在不同压强下的温度进行了反演,得到各压强下的温度与实际温度的绝对误差小于2.50 K,反演温度的平均值与实际温度误差小于0.15 K,该结果证明了实验测量得到的氮气的体黏滞系数具有较高的准确性,同时也说明利用瑞利-布里渊散射反演气体参数具有较高的准确性和可靠性.Bulk viscosity is an important parameter to understand gas viscosity in micro perspective. The traditional ultra- sound absorbtion method with acoustic frequencies in a megahertz range cannot be directly applied to high frequencies field, where acoustic waves are in the gigahertz domain. However, gas bulk viscosity at high frequency can be measured by spontaneous Rayleigh-Brillouin scattering (SRBS) and coherent Rayleigh-Brillouin scattering (CRBS). Recent researches show that the bulk viscosity of nitrogen measured by CRBS at a wavelength of 532 nm is obviously different from the values from SRBS in the near-ultraviolet region. In order to obtain accurate bulk viscosity of nitrogen at the wavelength of 532 nm, the SRBS spectra of nitrogen excited by a 532 nm laser are measured in a pressure range from 1 bar to 9 bar at the constant room temperature. The measured SRBS spectrum at the pressure of 7 bar is compared with the theoretical spectrum to obtain optimal scattering angle by using the principle of minimum value of X2. The theoretical spectrum is calculated by convolving the Tenti $6 model with the instrument transmission function of measurement system. Given that the effect of pressure on the bulk viscosity is negligible, the bulk viscosity value (1.46 4- 0.14)× 10-5 kg·m-1· s-1 of nitrogen at a temperature of 299 K is acquired by averaging the values of bulk viscosity under different pressures (4-9 bar), each value is obtained by comparing the measured spectra at different pressures with the theoretical spectra by using the optimal scattering angle and the principle of minimum value of X2. The values of bulk viscosity of nitrogen over the pressure of 1-3 bar are not considered because of its big deviation compared with the values under higher pressures (4-9 bar). The results show that the average value of bulk viscosity obtained in our experiment is close to that from the theoretical calculation and SRBS experiments reported in the literature but different obviously from the bulk visc
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222