户外天气状况分类识别  被引量:4

Outdoor Weather Classification

在线阅读下载全文

作  者:史静[1] 朱虹[1] 韩勇[1] SHI Jing, ZHU Hong, HAN Yong(School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, Chin)

机构地区:[1]西安理工大学自动化与信息工程学院,西安710048

出  处:《计算机系统应用》2018年第4期259-263,共5页Computer Systems & Applications

基  金:国家自然科学基金(61502385);西安市科技计划项目(CXY1509(13));西安理工大学教学研究项目(xjy1775)

摘  要:针对户外监控系统需要利用图像画面进行天气状态识别的问题,提出了一种新的词袋模型,以及SVM和随机森林相结合的分类方法,对晴天与阴天两类天气状态进行识别.词袋模型利用SIFT特征,通过聚类构建词典,并用最小二乘法求解最佳图像的词典结构参数,最终根据金字塔匹配得到多尺度图像词袋模型特征.分类器的构造采用支持向量机(SVM)作为一级分类器,对小置信样本进行粗分类,之后,再利用随机森林构造作为二级分类器进行判别.通过对两类天气图像集的10 000张图像进行测试,其识别准确率验证了方法的有效性.Considering the outdoor monitoring system using the image to identify weather conditions, a novel classification method with bag of words model is proposed which combines SVM with random forest to identify the sunny or cloudy days. The bag of words model uses the SIFT feature to construct the dictionary by clustering, and uses the least squares method to solve the dictionary structure parameters of the optimal image. Finally, the multi-scale image bag of words model feature is obtained according to the pyramid matching. The construction of the classifier uses the support vector machine (SVM) as the first level classifier to classify the small confidence samples, and then uses the random forest as the second level classifier to judge. Through the test of the 10 000 images of two categories of weather images, the recognition accuracy verifies the effectiveness of the method.

关 键 词:天气识别 SIFT描述子 空间金字塔匹配 支持向量机(SVM) 随机森林 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象