An Efficient Two-Phase Model for Computing Influential Nodes in Social Networks Using Social Actions  被引量:1

An Efficient Two-Phase Model for Computing Influential Nodes in Social Networks Using Social Actions

在线阅读下载全文

作  者:Mehdi Azaouzi Lotfi Ben Romdhane 

机构地区:[1]Modeling of Automated Reasoning Systems Research Laboratory LR17ES05 Higher Institute of Computer Science and Telecom, University of Sousse, Sousse 526-~002, Tunisia

出  处:《Journal of Computer Science & Technology》2018年第2期286-304,共19页计算机科学技术学报(英文版)

摘  要:The measurement of influence in social networks has received a lot of attention in the data mining community. Influence maximization refers to the process of finding influential users who make the most of information or product adoption. In real settings, the influence of a user in a social network can be modeled by the set of actions (e.g., "like", "share", "retweet", "comment") performed by other users of the network on his/her publications. To the best of our knowledge, all proposed models in the literature treat these actions equally. However, it is obvious that a "like" of a publication means less influence than a "share" of the same publication. This suggests that each action has its own level of influence (or importance). In this paper, we propose a model (called Social Action-Based Influence Maximization Model, SAIM) for influence maximization in social networks. In SAIM, actions are not considered equally in measuring the "influence power" of an individual, and it is composed of two major steps. In the first step, we compute the influence power of each individual in the social network. This influence power is computed from user actions using PageRank. At the end of this step, we get a weighted social network in which each node is labeled by its influence power. In the second step of SAIM, we compute an optimal set of influential nodes using a new concept named "influence-BFS tree". Experiments conducted on large-scale real-world and synthetic social networks reveal the good performance of our model SAIM in computing, in acceptable time scales, a minimal set of influential nodes allowing the maximum spreading of information.The measurement of influence in social networks has received a lot of attention in the data mining community. Influence maximization refers to the process of finding influential users who make the most of information or product adoption. In real settings, the influence of a user in a social network can be modeled by the set of actions (e.g., "like", "share", "retweet", "comment") performed by other users of the network on his/her publications. To the best of our knowledge, all proposed models in the literature treat these actions equally. However, it is obvious that a "like" of a publication means less influence than a "share" of the same publication. This suggests that each action has its own level of influence (or importance). In this paper, we propose a model (called Social Action-Based Influence Maximization Model, SAIM) for influence maximization in social networks. In SAIM, actions are not considered equally in measuring the "influence power" of an individual, and it is composed of two major steps. In the first step, we compute the influence power of each individual in the social network. This influence power is computed from user actions using PageRank. At the end of this step, we get a weighted social network in which each node is labeled by its influence power. In the second step of SAIM, we compute an optimal set of influential nodes using a new concept named "influence-BFS tree". Experiments conducted on large-scale real-world and synthetic social networks reveal the good performance of our model SAIM in computing, in acceptable time scales, a minimal set of influential nodes allowing the maximum spreading of information.

关 键 词:social network social influence social action personalized PageRank influence-BFS tree 

分 类 号:TP393.4[自动化与计算机技术—计算机应用技术] TP393[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象