检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Li-hang HOU BO HOU Suo-gang GAO
机构地区:[1]College of Mathematics and Information Science, Hebei Normal University
出 处:《Acta Mathematicae Applicatae Sinica》2018年第2期281-292,共12页应用数学学报(英文版)
基 金:Supported by the Natural Science Foundation of China(No.11471097);the Innovative Fund Project of Hebei Province(sj.2017084)
摘 要:Let F denote the folded (2D + 1)-cube with vertex set X and diameter D ≥ 3. Fix x∈ X. We first define a partial order ≤ on X as follows. For y,z ∈ X let y ≤ z whenever (x,y)+ (y,z) =- (x, z). Let R (resp. L) denote the raising matrix (resp. lowering matrix) of P. Next we show that there exists a certain linear dependency among RL2, LRL, L2R and L for each given Q-polynomial structure of F. Finally, we determine whether the above linear dependency structure gives this poser a uniform structure or strongly uniform structure.Let F denote the folded (2D + 1)-cube with vertex set X and diameter D ≥ 3. Fix x∈ X. We first define a partial order ≤ on X as follows. For y,z ∈ X let y ≤ z whenever (x,y)+ (y,z) =- (x, z). Let R (resp. L) denote the raising matrix (resp. lowering matrix) of P. Next we show that there exists a certain linear dependency among RL2, LRL, L2R and L for each given Q-polynomial structure of F. Finally, we determine whether the above linear dependency structure gives this poser a uniform structure or strongly uniform structure.
关 键 词:distance-regular graph the folded (2D + 1)-cube uniform poset
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.184