基于光纤传感器的物联网触发节点控制研究  

Internet of things based on optical fiber sensor trigger node control research

在线阅读下载全文

作  者:孟海涛[1] MENG Haitao(School of Information Engineering, Yancheng Institute of Technology, Yancheng 224000, Chin)

机构地区:[1]盐城工学院信息工程学院

出  处:《激光杂志》2018年第4期119-123,共5页Laser Journal

基  金:江苏省自然科学基金青年基金(No.BK20150432)

摘  要:传统方法不能完成信号同模式间的匹配控制,容易出现物联网触发节点错误控制问题,因此设计了基于动态决策多尺度DTW算法的光纤传感器物联网触发节点控制方法,采用特征提取和分类器设计的融合策略,将光纤传感器物联网触发节点信号的频谱基于频率尺度分段采集信号特征参数,基于触发信号频谱被损坏的位置,对各频域尺度中的决策权重进行调控,确保不同物联网触发节点信号同相应模式的对应,实现触发节点信号模式的有效控制,完成物联网触发节点的准确控制。实验结果说明,所提方法对基于光纤传感器的物联网触发节点信号实施控制时,具有较高的模式控制精度,实现了物联网触发节点的准确控制。The traditional support vector machine method to control the optical fiber sensor based on the networking trigger node,time domain and frequency domain signal optical fiber sensor node control based on the control signal can not be completed,the same pattern,easy networking trigger node error control. Therefore,the research of optical fiber sensor dynamic decision multi-scale DTW algorithm based on network node trigger control method,the feature extraction and classifier design fusion strategy,optical fiber sensor networking spectrum trigger node signal based on frequency scale piecewise characteristic parameters of signal acquisition,signal spectrum damaged position based on the regulation of decision making the weight of each frequency scale,to ensure that the same networking nodes corresponds with the corresponding signal trigger mode,realize the effective control mode trigger signal node,complete networking node trigger accurate control. The experimental results show that the proposed method has higher model control accuracy when implementing the control of the nodes of the Internet of things triggered by fiber optic sensors,and realizes the accurate control of the nodes triggered by the Internet of things.

关 键 词:光纤传感器 物联网 触发节点 信号 控制 研究 

分 类 号:TN277[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象