Light-powered direction-controlled micropump  

Light-powered direction-controlled micropump

在线阅读下载全文

作  者:Mingtong Li Yajun Su Hui Zhang Bin Dong 

机构地区:[1]Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices,Soochow University, Suzhou 215123, China

出  处:《Nano Research》2018年第4期1810-1821,共12页纳米研究(英文版)

基  金:This work is supported by the National Natural Science Foundation of China (No. 21574094), the Natural Science Foundation of Jiangsu Province (No. BK20150314) and Collaborative Innovation Center (CIC) of Suzhou Nano Science. It is also supported by the 111 Project and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Fund for Excellent Creative Research Teams of Jiangsu Higher Education Institutions and the project-sponsored by SRF for ROCS, SEM,

摘  要:A micropump induces the flow of its surrounding fluids and is extremely promising in a variety of applications such as chemical sensing or mass transportation. However, it is still challenging to manipulate its pumping direction. In this stud~ we examine a binary micropump based on perovskite and poly[(2-methoxy-5-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV). The micropump is operational under the influence of light. Light exhibits significant versatility in controlling the pumping phenomenon of the micropump. It governs the start and stop and also regulates the velocity and directions. The direction control signifies immense opportunities for the development of micropumps with unprecedented pumping behaviors and functions (such as heartbeat-like pumping, rectification, and amplification). This makes them potentially useful in various fields. Hence, it is expected that the micropump reported in the current study could act as a key step towards the further development of more sophisticated micropumps for diverse applications.A micropump induces the flow of its surrounding fluids and is extremely promising in a variety of applications such as chemical sensing or mass transportation. However, it is still challenging to manipulate its pumping direction. In this stud~ we examine a binary micropump based on perovskite and poly[(2-methoxy-5-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV). The micropump is operational under the influence of light. Light exhibits significant versatility in controlling the pumping phenomenon of the micropump. It governs the start and stop and also regulates the velocity and directions. The direction control signifies immense opportunities for the development of micropumps with unprecedented pumping behaviors and functions (such as heartbeat-like pumping, rectification, and amplification). This makes them potentially useful in various fields. Hence, it is expected that the micropump reported in the current study could act as a key step towards the further development of more sophisticated micropumps for diverse applications.

关 键 词:MICROPUMP light powered density-driven thermal effect direction control 

分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置] TP317[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象