机构地区:[1]The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Rood, Shanghai200050, China [2]University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China [3]Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rood, Suzhou 215123, China
出 处:《Nano Research》2018年第4期1895-1904,共10页纳米研究(英文版)
基 金:This work was financially supported by the National Natural Science Foundation of China (No. 61301036), Shanghai science and Technology Star Project (No. 17QA1404700), Youth Innovation Promotion Assodation CAS (No. 2014226), Shanghai Key Basic Research Project (No. 16JC1402300), and the Major State Research Development Program of China (No. 2016YFA0203000).
摘 要:Copper nanowire (Cu NW) transparent electrodes have attracted considerable attention due to their outstanding electrical properties, flexibility and low cost. However, complicated post-treatment techniques are needed to obtain good electrical conductivity, because of the organic residues and oxide layers on the surface of the Cu NWs. In addition, commonly used methods such as thermal annealing and acid treatment often lead to nanowire damage. Herein, a TiO2 sol treatment was introduced to obtain Cu NW transparent electrodes with superb performance (13 Ω/sq @ 82% T) at room temperature within one minute. Polymer solar ceils with excellent flexibility were then fabricated on the copper nanowire- TiO2-polyacrylate composite electrode. The power conversion efficiency (PCE) of the cells based on a blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61- butyric acid methyl ester (PC61BM) reached 3.11%, which was better than the control devices that used indium tin oxide (ITO)-PET electrodes, and outperforms other Cu NW based organic solar cells previously reported. The PCE of the solar cells based on Cu NW electrodes remained at 90% after 500 cycles of bending, while the PET/ITO solar cells failed after 20 and 200 cycles, with sheet resistance of 35 and 15 Ω/sq, respectively.Copper nanowire (Cu NW) transparent electrodes have attracted considerable attention due to their outstanding electrical properties, flexibility and low cost. However, complicated post-treatment techniques are needed to obtain good electrical conductivity, because of the organic residues and oxide layers on the surface of the Cu NWs. In addition, commonly used methods such as thermal annealing and acid treatment often lead to nanowire damage. Herein, a TiO2 sol treatment was introduced to obtain Cu NW transparent electrodes with superb performance (13 Ω/sq @ 82% T) at room temperature within one minute. Polymer solar ceils with excellent flexibility were then fabricated on the copper nanowire- TiO2-polyacrylate composite electrode. The power conversion efficiency (PCE) of the cells based on a blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61- butyric acid methyl ester (PC61BM) reached 3.11%, which was better than the control devices that used indium tin oxide (ITO)-PET electrodes, and outperforms other Cu NW based organic solar cells previously reported. The PCE of the solar cells based on Cu NW electrodes remained at 90% after 500 cycles of bending, while the PET/ITO solar cells failed after 20 and 200 cycles, with sheet resistance of 35 and 15 Ω/sq, respectively.
关 键 词:copper nanowires transparent electrode flexible polymer solar cells
分 类 号:TN873.91[电子电信—信息与通信工程] TM914.4[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...