Influence of austempering process on microstructures and mechanical properties of V-containing alloyed ductile iron  被引量:1

Influence of austempering process on microstructures and mechanical properties of V-containing alloyed ductile iron

在线阅读下载全文

作  者:Jun-jun Cui Li-qing Chen 

机构地区:[1]State Key Laboratory of Rolling and Automation,Northeastern University, Shenyang 110819, Liaoning, China [2]College of Mechanical and Vehicle Engineering, ShenyangInstitute of Technology, Fushun 113122, Liaoning, China

出  处:《Journal of Iron and Steel Research International》2018年第1期81-89,共9页

摘  要:The influence of austempering time and vanadium addition on microstructure and mechanical properties of the alloyed ductile iron has been investigated. The 0.30 wt% V-containing and V-free alloyed ductile irons were firstly austenitized at 850 ℃ for 1 h and then austempered in a salt bath at 300 ℃ for 2, 3 and 4 h, respectively. For the 0.3 wt% V-containing alloyed ductile iron, the transformation product (ausferrite) was finer, and a small amount of martensite and a large amount of stable austenite were obtained after austempering for 2 h, while higher hardness and compressive strength of 62.8 HRC and 3000 MPa were achieved. For the V-free alloyed ductile iron, lower hardness and compressive strength were measured to be 56.8 HRC and 2320 MPa. As the austempering time increases, the amount of stable austenite decreases in the V-containing ductile iron, typically for the start of the second stage formation (retained austenite (γτ) →α + carbide). Based on this, it is assumed that the optimal processing window (OPW) was narrowed due to the addition of 0.30 wt% V as compared to the V-free ductile iron. When the hardness of 0.30 wt% V-alloyed ductile iron was higher than 59 HRC, the highest wear resist- ance was obtained. The mechanical cutting plays a dominant role in abrasive wear process.The influence of austempering time and vanadium addition on microstructure and mechanical properties of the alloyed ductile iron has been investigated. The 0.30 wt% V-containing and V-free alloyed ductile irons were firstly austenitized at 850 ℃ for 1 h and then austempered in a salt bath at 300 ℃ for 2, 3 and 4 h, respectively. For the 0.3 wt% V-containing alloyed ductile iron, the transformation product (ausferrite) was finer, and a small amount of martensite and a large amount of stable austenite were obtained after austempering for 2 h, while higher hardness and compressive strength of 62.8 HRC and 3000 MPa were achieved. For the V-free alloyed ductile iron, lower hardness and compressive strength were measured to be 56.8 HRC and 2320 MPa. As the austempering time increases, the amount of stable austenite decreases in the V-containing ductile iron, typically for the start of the second stage formation (retained austenite (γτ) →α + carbide). Based on this, it is assumed that the optimal processing window (OPW) was narrowed due to the addition of 0.30 wt% V as compared to the V-free ductile iron. When the hardness of 0.30 wt% V-alloyed ductile iron was higher than 59 HRC, the highest wear resist- ance was obtained. The mechanical cutting plays a dominant role in abrasive wear process.

关 键 词:Alloyed ductile iron VANADIUM AUSTEMPERING Microstructure Property Wear resistance 

分 类 号:TG146.21[一般工业技术—材料科学与工程] TG142.71[金属学及工艺—金属材料]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象