Error Formulas for Lagrange Projectors Determined by Cartesian Sets  被引量:1

Error Formulas for Lagrange Projectors Determined by Cartesian Sets

在线阅读下载全文

作  者:LI Zhe ZHANG Shugong DONG Tian GONG Yihe 

机构地区:[1]School of Science, Changchun University of Science and Technology, Changchun 130022, China [2]Key Laboratory of Symbolic Computation and Knowledge Engineering, Jilin University, Changchun 130012, China [3]School of Mathematics, Key Laboratory of Symbolic Computation and Knowledge Engineering (Ministry of Education), Jilin University, Changchun 130012, China [4]Northeast Electric Power University, Jilin 132012, China School of Mathematics, Jilin University, Changchun 130012, China

出  处:《Journal of Systems Science & Complexity》2018年第4期1090-1102,共13页系统科学与复杂性学报(英文版)

基  金:supported by Chinese National Natural Science Foundation under Grant Nos.11601039,11671169,11501051;the Open Fund Key Laboratory of Symbolic Computation and Knowledge Engineering(Ministry of Education)under Grant No.93K172015K06;the Education Department of Jilin Province,“13th Five-Year”Science and Technology Project under Grant No.JJKH20170618KJ

摘  要:This paper studies error formulas for Lagrange projectors determined by Cartesian sets. Cartesian sets are properly subgrids of tensor product grids. Given interpolated functions with all order continuous partial derivatives, the authors directly construct the good error formulas for Lagrange projectors determined by Cartesian sets. Owing to the special algebraic structure, such a good error formula is useful for error estimate.

关 键 词:Cartesian sets error formulas ideal interpolation multivariate polynomial interpolation 

分 类 号:O174.42[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象