检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨波 YANG Bo(Data Science Research Center;Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China)
机构地区:[1]昆明理工大学数据科学研究中心,昆明650500 [2]昆明理工大学理学院,昆明650500
出 处:《海南热带海洋学院学报》2018年第2期64-69,共6页Journal of Hainan Tropical Ocean University
基 金:昆明理工大学引进人才科研启动基金项目(KKSY201607047)
摘 要:分享广泛存在于日常生活的方方面面,量化解释分享的内涵和机制具有重要的意义.本文研究分享机制(博弈个体拿出收益的一部分平分给博弈群体里的每个成员)作用下采用自我质疑更新规则演化的两策略博弈模型,分别从理论分析和计算机模拟两个方面展开研究.理论分析方面,建立了博弈模型和Ising模型间的转化关系,获得博弈模型的有效哈密顿量;计算机模拟方面,采用了蒙特卡罗方法,所得结果验证了理论分析的正确性.此外,本文还通过有限尺度标度理论研究了博弈模型的相变和临界现象,结果显示:博弈模型与二维Ising模型具有相同的普适类.It is important to quantify the content and mechanism of sharing which widely exists on every aspect of everyday life. This paper studied the two-strategy game model under the evolution rule of self-questioning by sharing equally the finite fraction of payoffs collected by the individuals from direct game interaction with their immediate neighbors. The theoretical analysis and Monte Carlo simulation were involved to analyze this model. Theoretically, the transformation relationship between the game model and the Ising model was established, and the effective Hamiltonian of the game model was obtained. The results of Monte Carlo simulation are consistent with the theoretical analysis results. In addition, this paper also studied the phase transition and critical phenomena of the game model based on the finite size scaling theory. The results showed that the game model belongs to the same universality class as the two-dimensional Ising model with the same critical exponents.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15