Turbo equalization based on joint Gaussian,SIC-MMSE and LMMSE for nonlinear satellite channels  

Turbo equalization based on joint Gaussian,SIC-MMSE and LMMSE for nonlinear satellite channels

在线阅读下载全文

作  者:Zheren LONG Hua WANG Nan WU Jingming KUANG 

机构地区:[1]School of Information and Electronics, Beijing Institute of Technology

出  处:《Science China(Information Sciences)》2018年第4期145-157,共13页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.61471037,61571041)

摘  要:The nonlinear distortion of wideband signal due to the filtering and efficiently operated high power amplifiers limits the performance of satellite communications. Volterra series can be used to describe the nonlinear satellite channels effectively. Most existing equalizers simply ignore the nonlinear terms or treat all the nonlinear combinations of symbols as interference. In this study, by properly exploiting information from nonlinear terms, we propose three turbo equalizers for nonlinear satellite channels, namely, joint Gaussian(JG), soft interference cancellation-minimum mean square error(SIC-MMSE) and linear minimum mean square error(LMMSE) equalizers. In JG and SIC-MMSE-based equalizers, both the linear and nonlinear terms that contain the symbol of interest are considered as desired signals. Accordingly, the required statistics are calculated based on the a priori probabilities of coded bits from output of channel decoder.For LMMSE-based equalizer, we propose to calculate the extrinsic information from output of equalizer by excluding the prior information in both the linear and nonlinear terms. Simulation results demonstrate that the proposed equalizers significantly outperform the method which ignores the presence of nonlinear interferences. Moreover, the nonlinear terms that contain the symbol of interest can be exploited to further improve the performance of turbo equalization.The nonlinear distortion of wideband signal due to the filtering and efficiently operated high power amplifiers limits the performance of satellite communications. Volterra series can be used to describe the nonlinear satellite channels effectively. Most existing equalizers simply ignore the nonlinear terms or treat all the nonlinear combinations of symbols as interference. In this study, by properly exploiting information from nonlinear terms, we propose three turbo equalizers for nonlinear satellite channels, namely, joint Gaussian(JG), soft interference cancellation-minimum mean square error(SIC-MMSE) and linear minimum mean square error(LMMSE) equalizers. In JG and SIC-MMSE-based equalizers, both the linear and nonlinear terms that contain the symbol of interest are considered as desired signals. Accordingly, the required statistics are calculated based on the a priori probabilities of coded bits from output of channel decoder.For LMMSE-based equalizer, we propose to calculate the extrinsic information from output of equalizer by excluding the prior information in both the linear and nonlinear terms. Simulation results demonstrate that the proposed equalizers significantly outperform the method which ignores the presence of nonlinear interferences. Moreover, the nonlinear terms that contain the symbol of interest can be exploited to further improve the performance of turbo equalization.

关 键 词:nonlinear satellite channel turbo equalization joint Gaussian soft interference cancellationminimum mean square error(SIC-MMSE) linear minimum mean square error(LMMSE) 

分 类 号:TN927.2[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象