机构地区:[1]School of Materials Science and Engineering,Beihang University [2]Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences
出 处:《Chinese Journal of Structural Chemistry》2018年第3期383-392,共10页结构化学(英文)
基 金:Financial support from the NNSF of China(No.51171007 and 51271009)
摘 要:Cerium and europium codoped yttrium aluminum garnet(YAG:Ce,Eu) nanophosphors were prepared by sol-gel method.We systematically explored the structure,composition,morphology and photoluminescence(PL) properties by using X-ray diffraction,scanning electron microscope,high resolution transmission electron microscope,energy dispersive spectrometer,photoluminescence emission and excitation spectra techniques,and focused on clarifying the change of local structure surrounding Ce^3+ ions by utilizing advanced quantitative ^27Al magic angle spinning nuclear magnetic resonance spectroscopy.The results show that the lattice constant slightly increases as the Ce^3+ and Eu^3+ ions incorporate,and the geometric distortion of local structure surrounding Ce^(3+) activator introduced by the incorporated Eu^(3+) coactivator causes the variation of crystal field,which results in red shift of Ce^3+ PL emitting in YAG:Ce,Eu nanophosphor.Furthermore,the YAG:Ce,Eu nanophosphors could exhibit several sharp and narrow ^5D0 → ^7FJ(J = 1-4) emissions of Eu^3+ ion besides the classic broad ^5d1 → ^4f(^2F(5/2),^2F(7/2)) emissions of Ce^3+ ion under near ultraviolet(UV) excitation.Cerium and europium codoped yttrium aluminum garnet(YAG:Ce,Eu) nanophosphors were prepared by sol-gel method.We systematically explored the structure,composition,morphology and photoluminescence(PL) properties by using X-ray diffraction,scanning electron microscope,high resolution transmission electron microscope,energy dispersive spectrometer,photoluminescence emission and excitation spectra techniques,and focused on clarifying the change of local structure surrounding Ce^3+ ions by utilizing advanced quantitative ^27Al magic angle spinning nuclear magnetic resonance spectroscopy.The results show that the lattice constant slightly increases as the Ce^3+ and Eu^3+ ions incorporate,and the geometric distortion of local structure surrounding Ce^(3+) activator introduced by the incorporated Eu^(3+) coactivator causes the variation of crystal field,which results in red shift of Ce^3+ PL emitting in YAG:Ce,Eu nanophosphor.Furthermore,the YAG:Ce,Eu nanophosphors could exhibit several sharp and narrow ^5D0 → ^7FJ(J = 1-4) emissions of Eu^3+ ion besides the classic broad ^5d1 → ^4f(^2F(5/2),^2F(7/2)) emissions of Ce^3+ ion under near ultraviolet(UV) excitation.
关 键 词:YAG:Ce Eu nanophosphor photoluminescence crystal structure WLED
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...