可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟  被引量:6

Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows

在线阅读下载全文

作  者:李德梅 赖惠林 许爱国[2,3] 张广财[2] 林传栋 甘延标 Li De-Mei;Lai Hui-Lin;Xu Ai-Guo;Zhang Guang-Cai;Lin Chuan-Dong;Gan Yan-Biao(Key Laboratory of Analytical Mathematics and Application in Fujian Province, College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350007, China;National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics;Center for Applied Physics and Technology, Key Center for High Energy Density Physics Simulations of Ministry of Education, College of Engineering, Peking University, Beijing 100871, China;Center for Combustion Energy, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China;North China Institute of Aerospace Engineering, Langfang 065000, China)

机构地区:[1]福建师范大学数学与信息学院,福建省分析数学及应用重点实验室,福州350117 [2]北京应用物理与计算数学研究所,计算物理国家重点实验室,北京100088 [3]北京大学,应用物理与技术研究中心,高能量密度物理数值模拟教育部重点实验室,北京100871 [4]清华大学能源与动力工程系,燃烧能源中心,北京100084 [5]北华航天工业学院,廊坊065000

出  处:《物理学报》2018年第8期10-20,共11页Acta Physica Sinica

基  金:国家自然科学基金(批准号:11301082,11475028,11772064); 福建省自然科学基金(批准号:2014J05003); 福建省教育厅项目(批准号:JA13069,JB13020); 河北省自然科学基金(批准号:A2017409014); 河北省教育厅重点项目(批准号:ZD2017001); 河北省人才工程培养经费(批准号:A201500111)资助的课题

摘  要:使用离散Boltzmann模型模拟了可压流体系统中多模初始情况下的Rayleigh-Taylor不稳定性.该离散Boltzmann模型等效于一个Navier-Stokes模型外加一个关于热动非平衡行为的粗粒化模型.通过模拟Riemann问题:Sod激波管、冲击波碰撞和热Couette流问题验证模型的有效性,所得数值结果与解析解一致.利用该模型对界面间断随机多模初始扰动的可压Rayleigh-Taylor不稳定性进行数值模拟研究,得到不稳定性界面演化过程的基本图像.由于黏性和热传导共同作用,一开始扰动界面被"抹平",演化较慢;随着模式互相耦合而减少,演化开始加速,并经历非线性小扰动阶段和不规则非线性阶段,而后发展成典型的"蘑菇状",后期进入湍流混合阶段.由于扰动模式的耦合与发展,轻重流体的重力势能、压缩能与动能相互转化,系统先是趋于热动平衡态,而后偏离热动平衡态以线性形式增长,接着再次趋于热动平衡态,最后慢慢远离热动平衡态.We use a discrete Boltzmann model(DBM) to simulate the multi-mode Rayleigh-Taylor instability(RTI) in a compressible flow. This DBM is physically equivalent to a Navier-Stokes model supplemented by a coarse-grained model for thermodynamic nonequilibrium behavior. The validity of the model is verified by comparing simulation results of Riemann problems, Sod shock tube, collision between two strong shock waves, and thermal Couette flow with analytical solutions. Grid independence is verified. The DBM is utilized to simulate the nonlinear evolution of the RTI from multi-mode initial perturbation with discontinuous interface. We obtain the basic process of the initial disturbance interface which develops into mushroom graphs. The evolution of the system is relatively slow at the beginning, and the interface moves down on a whole. This is mainly due to the fact that the heat transfer plays a leading role, and the exchange of internal energy occurs near the interface of fluid. The overlying fluid absorbs heat, which causes the volume to expand, and the underlying fluid releases heat, which causes the volume to shrink, consequently the fluid interface moves downward. Meanwhile, due to the effects of viscosity and thermal conduction, the perturbed interface is smoothed. The evolution rate is slow at the initial stage. As the modes couple with each other, the evolution begins to grow faster. As the interface evolves gradually into the gravity dominated stage, the overlying and underlying fluids begin to exchange the gravitational potentials via nonlinear evolution. Lately, the two parts of fluid permeate each other near the interface. The system goes through the nonlinear disturbance and irregular nonlinear stages, then develops into the typical "mushroom" stage. Afterwards, the system evolves into the turbulent mixing stage. Owing to the coupling and development of perturbation modes, and the transformation among the gravitational potential energy, compression energy and kinetic energy, the system first appro

关 键 词:离散Boltzmann方法 RAYLEIGH-TAYLOR不稳定性 可压流体 动理学模型 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象