基于微分博弈的政企救灾合作策略研究  被引量:21

Research of cooperative relief strategy between government and enterprise based on differential game

在线阅读下载全文

作  者:赵黎明[1] 李聪[1] 郭祥[2] ZHAO Liming;LI Cong;GUO Xiang(College of Management and Economics, Tianjin University, Tianjin 300072, China;School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

机构地区:[1]天津大学管理与经济学部,天津300072 [2]天津大学环境科学与工程学院,天津300072

出  处:《系统工程理论与实践》2018年第4期885-898,共14页Systems Engineering-Theory & Practice

基  金:国家社会科学基金重大项目(13&ZD162)~~

摘  要:为应对灾害事故频发,政府和企业合作救灾已经受到人们的广泛关注,但企业救灾过程中慈善行为的动机并不单纯.文章首先假设在政府和救灾企业组成的简单系统中,政府处于主导地位,政府和企业的救灾投入会产生慈善商誉,企业的救灾投入还会产生广告效应,消费者需求受到二者的共同影响;然后利用微分博弈理论,构建了政府和企业的3种微分博弈模型.研究发现,在一定条件下,成本分担契约可以实现政府、企业和系统整体效益的帕累托改善;在协同合作契约下,政府、企业和系统整体效益都是最优的.最后,通过算例分析证明了结论的有效性,并对相关参数进行了灵敏度分析,为政企合作协同救灾提供理论依据.In response to frequent disasters, the cooperation in disaster relief between government and enterprises has caused wide public concern. But in the process of disaster relief, the motivation of enterprise charity is not simple. Considering a disaster relief system consisted of the government and one enterprise. Assuming that the government plays a dominant role, the relief efforts of the government and enterprise can increase the charity goodwill. The enterprises' relief efforts can also generate advertising effect, the consumer demand is effected by the two factors above. Then we established three differential game models. And it is founded that under the cost-sharing contract profits can achieve Pareto improvement for the government, the enterprise and the whole system under certain conditions; under the cooperation contract, profits can achieve optimum for both the government, the enterprise and the whole system. Finally, we verified the validity of conclusion through a numeral analysis.

关 键 词:救灾努力 慈善商誉 微分博弈 成本分担 反馈均衡 

分 类 号:F224[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象