出 处:《China Foundry》2018年第2期103-109,共7页中国铸造(英文版)
基 金:financially supported by the National Nature Science Foundations of China(51464032);National Basic Research Program of China(Grant No.2010CB635106)
摘 要:A new rare earth magnesium alloy(Mg-6 Zn-4 Sm-0.4 Zr, wt.%) was prepared by permanent mould casting. The microstructure and mechanical properties of the alloy sample in as-cast and various heat treatment situations were characterized with an optical microscope(OM), X-ray diffractometer(XRD), scanning electron microscope(SEM) equipped with energy dispersive spectroscope(EDS), transmission electron microscope(TEM) and mechanical tests at room temperature, respectively. The experimental results show that the as-cast alloy mainly consists of α-Mg, eutectic Mg_2Zn_3, MgZnSm and Mg_(41)Sm_5. These eutectic phases with continuous or semicontinuous morphology principally distribute along grain boundaries. Almost all the eutectic compounds dissolve in α-Mg and the grains have no obvious growth trend after optimum solution treatment at 490 °C for 18 h. Meanwhile, the ultimate tensile strength(UTS) of 229 MPa and elongation(EL) to rupture of 9.78% can be achieved through the optimal solution treatment, which increase by 37 MPa and 57.74%, respectively, compared with that of the as-cast alloy. Further aging treatments at 200 °C for different durations lead to the conspicuous increment of mechanical properties and prominent age-hardening response. Peak-aged alloy(treated at 200 °C for 12 h) reveals better mechanical properties(UTS 258 MPa, EL 9.42%, hardness 73.4 HV) compared with the same alloy treated in other aging conditions, which is mainly ascribed to precipitated Mg_2Zn_3 and MgZn_2 phases. Fracture analysis demonstrates that the as-cast alloy belongs to inter-granular and cleavage fracture patterns, while the solutionized alloy(treated at 490 °C for 18 h) reveals trans-granular and quasi-cleavage fracture modes. For the peak-aged alloy, the fracture pattern obeys the mixture of trans-granular and cleavage modes.A new rare earth magnesium alloy(Mg-6 Zn-4 Sm-0.4 Zr, wt.%) was prepared by permanent mould casting. The microstructure and mechanical properties of the alloy sample in as-cast and various heat treatment situations were characterized with an optical microscope(OM), X-ray diffractometer(XRD), scanning electron microscope(SEM) equipped with energy dispersive spectroscope(EDS), transmission electron microscope(TEM) and mechanical tests at room temperature, respectively. The experimental results show that the as-cast alloy mainly consists of α-Mg, eutectic Mg2Zn3, MgZnSm and Mg(41)Sm5. These eutectic phases with continuous or semicontinuous morphology principally distribute along grain boundaries. Almost all the eutectic compounds dissolve in α-Mg and the grains have no obvious growth trend after optimum solution treatment at 490 °C for 18 h. Meanwhile, the ultimate tensile strength(UTS) of 229 MPa and elongation(EL) to rupture of 9.78% can be achieved through the optimal solution treatment, which increase by 37 MPa and 57.74%, respectively, compared with that of the as-cast alloy. Further aging treatments at 200 °C for different durations lead to the conspicuous increment of mechanical properties and prominent age-hardening response. Peak-aged alloy(treated at 200 °C for 12 h) reveals better mechanical properties(UTS 258 MPa, EL 9.42%, hardness 73.4 HV) compared with the same alloy treated in other aging conditions, which is mainly ascribed to precipitated Mg2Zn3 and MgZn2 phases. Fracture analysis demonstrates that the as-cast alloy belongs to inter-granular and cleavage fracture patterns, while the solutionized alloy(treated at 490 °C for 18 h) reveals trans-granular and quasi-cleavage fracture modes. For the peak-aged alloy, the fracture pattern obeys the mixture of trans-granular and cleavage modes.
关 键 词:Mg-6Zn-4Sm-0.4Zr alloy heat treatment microstructure evolution mechanical properties fracture mode
分 类 号:TG146.22[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...