检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:娜迪热 胡俊 NA Di-re, HU Jun (School of Computer Science and Technology, BeiJing Jiao Tong University, BeiJing 10044, China )
机构地区:北京交通大学计算机与信息技术学院,北京100044
出 处:《电脑知识与技术》2018年第3期6-11,共6页Computer Knowledge and Technology
摘 要:随着互联网的发展,社交网络在人们的工作生活中扮演着重要的角色,人们在社交网络中发布、分享信息和观点,这些社交行为产生大量的数据,使得社交网络成为蕴含个人信息和情感的载体。该课题在已有相关研究的基础上,提出并验证了一种根据用户社交网络数据对用户的人格倾向进行预测的方法。在实现过程中,利用爬虫技术得到微博用户的相关数据,其中包括用户在使用社交网络时产生的文本信息,以及用户的行为信息与社交关系信息,工作重点是通过提取采集数据信息的相关特征值,并对特征值进行降维处理,在建立预测模型时采用了机器学习方法以提高准确率。通过对比实验,验证了提出的预测方法在人格预测的精确度上有显著的提高。With the development of the Internet, the social networks start playing an important role in people's work and life. Peo-ple publish and share information and opinions in social networks, and thus generate a large amount of data, making social net-works a carrier of personal information and emotion. Based on the existing studies, this research proposes a method to predict per-sonality tendency in the light of social network data. In the process of implementation, we use crawler technology to get the relateddata of micro-blog users, including the text information generated by users when using social networks, as well as their behavior in-formation and social relationship information. The focus lies in extracting the relevant characteristics of the collected data and infor-mation and reducing the dimension of the eigenvalue. A machine learning method is adopted in the process of establishing the fore-casting model to improve the accuracy. Through comparative experiments, it is verified that the proposed prediction method pres-ents a significant improvement in the accuracy of personality prediction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30