低碳钢表面Ni-P-β-SiC化学复合镀层的制备及性能  

Preparation and properties of electroless Ni-P-β-Si C composite coating on low carbon steel surface

在线阅读下载全文

作  者:刘艳[1,2] Liu Yan(Zaozhuang Vocational College of Science and Technology, Tengzhou Shandong 277500, China;Department of Chemistry, Capital Nol~nal University, Beijing 100037, China)

机构地区:[1]枣庄科技职业学院 [2]首都师范大学化学系

出  处:《金属热处理》2018年第4期204-207,共4页Heat Treatment of Metals

摘  要:采用优化的工艺制备了Ni-P-β-SiC化学复合镀层,分析了镀层的宏观和微观形貌以及不同β-SiC颗粒浓度对复合镀层镀速及显微硬度的影响,对比了Ni-P镀层和Ni-P-13-SiC复合镀层的干摩擦性能,研究了热处理对化学复合镀层性能的影响。结果表明,采用优化后工艺制备的Ni-P-β-SiC复合镀层与基体结合良好,整体厚度均匀,色泽较暗,无起皮脱落等现象;Ni-P-β-SiC化学复合镀层的镀速和显微硬度随镀液中β-SiC颗粒浓度的提高呈现出先增后减的趋势;复合镀层的干摩擦性能因β-SiC的加入而得到提高;热处理后复合镀层的显微硬度增大,摩擦因数和磨损量降低。Electroless Ni-P-β-SiC composite coating was prepared by optimized process. The macro morphology and micro morphology of the coating and effects of different β-SIC concentration on deposition rate and microhardness of the composite coating were analyzed. The dry friction performance of Ni-P coating and Ni-P-β-SiC composite coating was compared. Finally, the influence of heat treatment on the properties of electroless composite coating was also studied. The results show that the Ni-P-β-SiC composite coating prepared by the optimized process has a good combination with the substrate, the overall thickness is uniform, the color is dark, and the phenomenon of peeling off does not occur. The deposition rate and microhardness of the Ni-P-β-SiC composite coating show a trend of first increasing and then decreasing with increasing of β-SiC particle concentration in solution. The dry friction performance of composite coating is improved due to the addition of β-SIC particles, the microhardness of the composite coating is increased, the friction coefficient and wear loss of composite coating are reduced after heat treatment.

关 键 词:化学方法 复合镀层 性能 热处理 

分 类 号:TG174.4[金属学及工艺—金属表面处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象