检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭丽萍 LI Xiangkun FAN Long WANG Xuemin 吴卫东
机构地区:[1]Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900, China [2]Institute of Applied Electronics, CAEP, Mianyang 621900, China
出 处:《Journal of Wuhan University of Technology(Materials Science)》2018年第2期326-330,共5页武汉理工大学学报(材料科学英文版)
摘 要:Nano-diamond like carbon(DLC) thin films were prepared on fused silica and Cu substrates by the pulsed-laser deposition technique with different laser intensities. Step-measurement, atomic force microscope(AFM), UV-VIS-NIR transmittance spectroscopy and Raman spectroscopy were used to characterize the films. It was shown that the deposition rate increases with the laser intensity, and the films prepared under different laser intensities show different transparency. Raman measurement showed that the content of sp^3 of the Nano-DLC thin films decreases with the laser intensity. The field emission properties of the Nano-DLC thin films on Cu substrates were studied by the conventional diode method, which showed that the turn-on field increases and the current density decreases with sp^3 content in the films. A lower turn-on field of 6 V/um and a higher current density of 1 uA/cm^2 were obtained for Nano-DLC thin films on Cu substrate.Nano-diamond like carbon(DLC) thin films were prepared on fused silica and Cu substrates by the pulsed-laser deposition technique with different laser intensities. Step-measurement, atomic force microscope(AFM), UV-VIS-NIR transmittance spectroscopy and Raman spectroscopy were used to characterize the films. It was shown that the deposition rate increases with the laser intensity, and the films prepared under different laser intensities show different transparency. Raman measurement showed that the content of sp^3 of the Nano-DLC thin films decreases with the laser intensity. The field emission properties of the Nano-DLC thin films on Cu substrates were studied by the conventional diode method, which showed that the turn-on field increases and the current density decreases with sp^3 content in the films. A lower turn-on field of 6 V/um and a higher current density of 1 uA/cm^2 were obtained for Nano-DLC thin films on Cu substrate.
关 键 词:nano-DLC thin films pulsed-laser deposition field emission properties
分 类 号:TB383.2[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145