多维次成分并行提取算法  

Parallel Algorithm for Multiple Minor Component Extraction

在线阅读下载全文

作  者:高迎彬 孔祥玉 崔巧花 申国瑞 GAO Yingbin;KONG Xiangyu;CUI Qiaohua;SHEN Guorui(Military Representative Office of Rocket Force in Shijiazhuang, Shijiazhuang 050081, China;Department of Control Engineering, Rocket Force University of Engineering, Xi'an 710025, China;China Communication System Co. Ltd. , Shijiazhuang 050081, China;Unit 69250 of PLA, Urumqi 830002, China)

机构地区:[1]火箭军驻石家庄地区军事代表室,石家庄050081 [2]火箭军工程大学控制工程系,西安710025 [3]中华通信系统有限责任公司,石家庄050081 [4]解放军69250部队,乌鲁木齐830002

出  处:《指挥信息系统与技术》2018年第2期39-42,共4页Command Information System and Technology

基  金:国家自然科学基金(61074072和61673387);陕西省自然科学基金(2016JM6015)资助项目

摘  要:针对目前多维次成分提取算法限制条件多和初始参数难以选择问题,在研究Douglas次子空间算法基础上,基于加权矩阵法提出了一种新型多维次成分并行提取算法。对该算法的自稳定性和收敛性分析表明:在输入信号有界和学习因子足够小时,该算法状态矩阵的模值总能收敛至一个常数;当且仅当状态矩阵收敛至需提取的多维次成分时,该算法达到稳定状态。仿真试验表明,与现有算法相比,该算法具有参数选取方法简单、易于实现和收敛速度快的优点。The existing multiple minor component extraction algorithms have two problems, in cluding requiring too many limited conditions and choosing the initial parameters to be difficult. Aimed at the above problems, based on studying Douglas minor subspace tracking algorithm, a novel parallel algorithm for multiple minor component extraction is proposed by the weighted ma trix method. The analysis on its self-stability and the convergence shows that with the boundary input signal and a small enough learning factor, the state matrix module value of the algorithm always converges a constant. It also shows that if and only if the state matrix converges to the de sired multiple minor components, the algorithm can achieve the stability status. The simulation experiment shows that the algorithm has advantages of simpler parameter choose method, easier to realize and faster convergence speed than the existing algorithms.

关 键 词:次成分分析 次成分提取 Douglas算法 加权矩阵 自稳定性 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象