苹果炭疽叶枯病菌对3种杀菌剂的敏感性分析  被引量:12

Detection of the sensitivity of Colletotrichum gloeosporioides to three fungicides

在线阅读下载全文

作  者:王美玉 冀志蕊[2,1] 王娜[1] 迟福梅[1] 周宗山[1] 张俊祥[2,1] WANG Meiyu;JI Zhirui;WANG Na;CHI Fumei;ZHOU Zongshan;ZHANG Junxiang(Key Laboratory of Biology and Genetic Improvement of Horticultural Crops( Germplasm Resources Utilization), Ministry of Agrieul- ture, Xingcheng 125100, Liaoning, China;Researeh hzstitute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China)

机构地区:[1]中国农业科学院果树研究所,辽宁兴城125100 [2]中国农业科学院果树研究所农业部园艺作物种质资源利用重点实验室,辽宁兴城125100

出  处:《果树学报》2018年第4期458-468,共11页Journal of Fruit Science

基  金:中央级公益性科研院所基本科研业务费专项(1610182016002);国家自然科学基金青年科学基金(31501596);中国农业科学院科技创新工程(CAAS-ASTIP)

摘  要:【目的】了解我国苹果主产区苹果炭疽叶枯病菌(Colletotrichum gloeosporioides)对苯并咪唑类、甾醇脱甲基抑制剂类和咪唑类杀菌剂敏感性的现状,旨为苹果炭疽叶枯病的科学防治提供参考,以及为苹果炭疽叶枯病菌抗药分子机制研究提供理论依据。【方法】采用区分剂量法和菌丝生长速率法,对采自于我国苹果主产区的117个苹果炭疽叶枯病菌菌株进行甲基硫菌灵、戊唑醇、咪鲜胺的敏感性测定,并对随机抽测的28个菌株的β-微管蛋白基因(β-tubulin)进行序列分析。【结果】117个供试菌株对甲基硫菌灵的抗药性频率为100%,均为高水平抗性菌株(HR)。随机抽测24个菌株的β-tubulin基因,其中23个菌株的β-tubulin蛋白第198位氨基酸从谷氨酸(Glu)突变为丙氨酸(Ala),另外1个菌株ZG4-7的第200位氨基酸从苯丙氨酸(Phe)突变成酪氨酸(Tyr)。苹果炭疽叶枯病菌对戊唑醇的敏感性检测结果表明,戊唑醇对供试菌株的EC_(50)值(ρ,后同)为0~0.843 0 mg·L^(-1),平均EC_(50)值为0.155 5 mg·L^(-1),75.21%的菌株对戊唑醇表现出低水平抗药性,设置质量浓度为5 mg·L^(-1)时,对供试群体的平均抑制率为92.72%。苹果炭疽叶枯病菌供试群体对咪鲜胺的敏感性较强,平均EC_(50)值为0.011 9 mg·L^(-1),设置质量浓度为0.5 mg·L^(-1)时,咪鲜胺对供试群体的平均抑制率为95.02%。【结论】苹果炭疽叶枯病菌对苯并咪唑类杀菌剂甲基硫菌灵表现出高抗性;对DMIs类杀菌剂戊唑醇表现出低水平抗性,但已产生高水平抗性菌株;对咪唑类药剂咪鲜胺敏感性较强。【Objective】Colletotrichum gloeosporioides(anamorph of Glomerella cingulata), a ubiquitous fungal pathogen, is the agent causing Glomerella leaf spot(GLS) on apples. Under favorable conditions, GLS can result in seventy-five percent defoliation by harvest, weakening trees and reducing yield.In recent years, an epidemic of GLSA broke out in most apple planting areas in China, because of an indefinite occurrence period and resulitn in a severe impairment. The disease is initiated when conidia attaches to the plants surfaces via wind or rain splash dispersal, where trhe conidia germinates and differentiates into a specialized infection structure called appressorium. After invasion, C. gloeosporioides grows biotrophically, proliferates into neighboring cells, turns into a necrotrophic development and eventually results in lesions on the plants. Planting a resistance cultivar is considered to be a key strategy and one of the most efficient methods of controlling plant diseases. Many quality cultivars derived from the"Delicious"group, including'Gala''Gold Delicious', were widely planted. Some biocontrol products are applied to plants for protection and achieve good benefits of social and economic, but the commercial biocontrol product showed no effect on GLS in leaves and fruits. Therefore, this disease is primarily managed with chemical controls, such as benzimidazole fungicides, sterol demethylation in-hibitors(DMI) and imidazole. The severity of GLS can be reduced in the orchard by applying some fungicides beginning about 6 weeks after petal fall and continuing every 2 weeks until 2 to 3 weeks before harvest. Combinations of chelated zinc materials and dithiocarbamate fungicides improve control. However, while frequent applications are effective, they also increase production costs and can have damaging effects on the environment and human health. Moreover, plant pathogens can become resistant to fungicides and it can then fail as a control. For investigating the sensitivity of C. gloeospo

关 键 词:苹果炭疽叶枯病菌 甲基硫菌灵 戊唑醇 咪鲜胺 β-tubulin基因 敏感性 

分 类 号:S661.1[农业科学—果树学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象