检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qi Lou Quanshui Wu
机构地区:[1]School of Mathematical Sciences, Fudan University
出 处:《Science China Mathematics》2018年第5期813-830,共18页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 11331006 and 11171067)
摘 要:The Hopf dual H~? of any Poisson Hopf algebra H is proved to be a co-Poisson Hopf algebra provided H is noetherian. Without noetherian assumption, unlike it is claimed in literature, the statement does not hold. It is proved that there is no nontrivial Poisson Hopf structure on the universal enveloping algebra of a non-abelian Lie algebra. So the polynomial Hopf algebra, viewed as the universal enveloping algebra of a finite-dimensional abelian Lie algebra, is considered. The Poisson Hopf structures on polynomial Hopf algebras are exactly linear Poisson structures. The co-Poisson structures on polynomial Hopf algebras are characterized.Some correspondences between co-Poisson and Poisson structures are also established.The Hopf dual H~? of any Poisson Hopf algebra H is proved to be a co-Poisson Hopf algebra provided H is noetherian. Without noetherian assumption, unlike it is claimed in literature, the statement does not hold. It is proved that there is no nontrivial Poisson Hopf structure on the universal enveloping algebra of a non-abelian Lie algebra. So the polynomial Hopf algebra, viewed as the universal enveloping algebra of a finite-dimensional abelian Lie algebra, is considered. The Poisson Hopf structures on polynomial Hopf algebras are exactly linear Poisson structures. The co-Poisson structures on polynomial Hopf algebras are characterized.Some correspondences between co-Poisson and Poisson structures are also established.
关 键 词:Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3