泊松INAR(1)模型参数估计方法的比较及其应用  

Comparison of Parametric Estimation Methods for Poisson INAR(1) Model with Its Applications

在线阅读下载全文

作  者:胡祥[1] 程芳芳 张连增 Hu Xiang;Cheng Fangfang;Zhang Lianzeng(School of Finance, Zhongnan University of Economics and Law, Wuhan 430073, China;School of Finance, Nankai University, Tianjin 300071, China)

机构地区:[1]中南财经政法大学金融学院,湖北武汉430073 [2]南开大学金融学院,天津300071

出  处:《南开大学学报(自然科学版)》2018年第2期65-74,共10页Acta Scientiarum Naturalium Universitatis Nankaiensis

基  金:国家自然科学基金青年项目(71601186;71603180);教育部人文社科基金青年项目(14YJCZH025)

摘  要:探讨了泊松INAR(1)模型的参数估计.基于CLS估计方法,提出一种偏差修正CLS估计方法并分析了其大样本性质.随机模拟结果表明:与CLS估计和CML估计方法相比,偏差修正CLS估计方法可以有效减小参数估计的偏差.偏差修正CLS估计方法在有限样本下估计效果较好,同时计算过程简便,具有较高的实用性.最后,通过泊松INAR(1)模型对一组实际的整数值时间序列数据建模,利用偏差修正CLS估计方法进行参数估计,并对模型进行预测.The parametric estimation methods are considered for the INAR(1) model with Poisson distributed innovations. Based on the CLS estimation method, the bias-adjusted CLS estimator for the Poisson INAR(1) model is derived. The asymptotic properties of the bias-adjusted CLS estimator are also studied. A series of stochastic simulations show that the proposed estimation method has the best performance in terms of bias, comparing with CLS estimation method and CML estimation method. The bias-adjusted estimator can be conveniently used in empirical studies due to its good finite-sample behavior and simple computation procedure. Finally, the bias-adjusted CLS estimation method to a real time series data is applied, which can produce preferable forecasts.

关 键 词:泊松INAR(1)模型 参数估计 偏差修正 随机模拟 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象