Mesoporous tubular graphene electrode for high performance supercapacitor  被引量:3

Mesoporous tubular graphene electrode for high performance supercapacitor

在线阅读下载全文

作  者:Jiarui Tian Chaojie Cui Chao Zheng Weizhong Qian 

机构地区:[1]Department of Chemical Engineering, Tsinghua University

出  处:《Chinese Chemical Letters》2018年第4期599-602,共4页中国化学快报(英文版)

基  金:financial support of National Key R&D Program of China (No. 2016YFA0200102);Beijing Municipal Science and Technology Project (No. Z161100002116012)

摘  要:We report the fabrication of mesoporous tubular graphene(MTG) by a chemical vapor deposition method using Mg O@Zn O core-shell structure as the template. The unique bi-directional ions transfer in unstack graphene layers and high mesopore ratio of MTGs allows capacitance reach 15 μF/cm^2 at 0.5 A/g, and11 μF/cm^2 at 10 A/g, which is closer to theoretical value(21μF/cm^2) than SWCNTs and DWCNTs at either low or high rate. Meanwhile, MTGs exhibited good structural stability, high surface area(701 m^2/g), high conductivity(30 S/cm) and low oxygen ratio(0.7 atom%), allowing excellent SC performance. The 4 V EDLC using MTGs and EMIMBF_4 electrolyte exhibited high energy density in wide range of high power density and excellent cycling stability, showing strong potential in EDLC and other electrochemical energy storage systems, in addition, showing significant factor of ion transfer distance for high performance SCs especially operating at high voltage using ionic liquid electrolyte.We report the fabrication of mesoporous tubular graphene(MTG) by a chemical vapor deposition method using Mg O@Zn O core-shell structure as the template. The unique bi-directional ions transfer in unstack graphene layers and high mesopore ratio of MTGs allows capacitance reach 15 μF/cm^2 at 0.5 A/g, and11 μF/cm^2 at 10 A/g, which is closer to theoretical value(21μF/cm^2) than SWCNTs and DWCNTs at either low or high rate. Meanwhile, MTGs exhibited good structural stability, high surface area(701 m^2/g), high conductivity(30 S/cm) and low oxygen ratio(0.7 atom%), allowing excellent SC performance. The 4 V EDLC using MTGs and EMIMBF_4 electrolyte exhibited high energy density in wide range of high power density and excellent cycling stability, showing strong potential in EDLC and other electrochemical energy storage systems, in addition, showing significant factor of ion transfer distance for high performance SCs especially operating at high voltage using ionic liquid electrolyte.

关 键 词:Graphene Carbon nanotube Ionic liquids Supercapacitor Core-shell structure 

分 类 号:TM53[电气工程—电器] TQ127.11[化学工程—无机化工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象