机构地区:[1]Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China [2]Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
出 处:《Nano Research》2018年第5期2512-2522,共11页纳米研究(英文版)
基 金:This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21371117 and 31571024) and the National Basic Research Program of China (No. 2016YFA0201602).
摘 要:For many biomedical and catalytic applications, such as encapsulation of proteins/enzymes in nanopartides (NPs), it is preferable to have well-dispersed small NPs that are stable in solution and behave quasi-homogeneously. However, conventional liquid phase methods for small-NP synthesis and functionalization usually face great difficulties in separation/purification and recycling. In addition, controlling the orientation of proteins inside NPs is also a crucial issue to maximize the activity of the encapsulated proteins. Herein, we report a solid phase method to solve these problems. Using His-tagged proteins as cores, well-dispersed core-sheU silica NPs are facilely synthesized and functionalized in a column. The core His-tagged proteins are kept bound on the surface of the resIn beads in the column during the entire process, making the separation/purification of NPs and their precursors during the multiple-step process as simple as a few-minutes procedure of draining and washing the column. Each obtained silica NP has an adjustable eccentric core-shell structure with only one His-tag sticking out of the particle. This single His-tag on the surface of each NP not only makes it easy for addressable and stoichiometric functionalization of the NP but also provides an easy way to reversibly assemble NPs into dimers or be oriented on the surface of large particles. Notably, this solid phase approach also provides a versatile means to control the orientation of proteins inside NPs, and the His-tag makes it easy to recycle those well-dispersed small NPs.For many biomedical and catalytic applications, such as encapsulation of proteins/enzymes in nanopartides (NPs), it is preferable to have well-dispersed small NPs that are stable in solution and behave quasi-homogeneously. However, conventional liquid phase methods for small-NP synthesis and functionalization usually face great difficulties in separation/purification and recycling. In addition, controlling the orientation of proteins inside NPs is also a crucial issue to maximize the activity of the encapsulated proteins. Herein, we report a solid phase method to solve these problems. Using His-tagged proteins as cores, well-dispersed core-sheU silica NPs are facilely synthesized and functionalized in a column. The core His-tagged proteins are kept bound on the surface of the resIn beads in the column during the entire process, making the separation/purification of NPs and their precursors during the multiple-step process as simple as a few-minutes procedure of draining and washing the column. Each obtained silica NP has an adjustable eccentric core-shell structure with only one His-tag sticking out of the particle. This single His-tag on the surface of each NP not only makes it easy for addressable and stoichiometric functionalization of the NP but also provides an easy way to reversibly assemble NPs into dimers or be oriented on the surface of large particles. Notably, this solid phase approach also provides a versatile means to control the orientation of proteins inside NPs, and the His-tag makes it easy to recycle those well-dispersed small NPs.
关 键 词:His-tagged nanoparticle solid phase reversible assembly addressable functionalization protein orientation
分 类 号:TQ175.711[化学工程—硅酸盐工业] TL631.24[核科学技术—核技术及应用]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...