运动相关脑电信号的运动意图预测方法研究  

Research on Prediction of Movement Intention Method Based on Movement-related EEG Signal

在线阅读下载全文

作  者:柳建光[1] 袁道任[1] 冯少康 Liu Jianguang, Yuan Daoren, Feng Shaokang(27 th Research Institute of China Electronics Technology Group Corporation, Zhengzhou 450047, Chin)

机构地区:[1]中国电子科技集团公司第二十七研究所,郑州450047

出  处:《计算机测量与控制》2018年第5期37-41,共5页Computer Measurement &Control

摘  要:为了找出在大脑的后顶叶皮层区(PPC)运动意图预测与运动想象EEG信号之间的关联,联合运动相关电位MRPs与mu/beta节律的事件相关同步/去同步(ERS/ERD)特征,首先用小波包分解WPD重构特征频段的小波包分解系数特征向量,其次采用共空间模式CSP提取空域特征向量,最后利用支持向量机(SVM)进行运动意图预测;通过实验验证,联合运动想象信号中的运动相关电位及mu/beta节律,运动意图预测分类准确率达到85%;证实了运动相关MRPs可以表征运动准备即运动规划阶段的脑神经机制;10Hz以下的mu和beta节律ERS/ERD特征能够体现运动意图的方向;研究结论进一步为精细运动(包括运动方向、速度等其他运动参数)预测提供技术支持。To find out how prediction of motor intention in the posterior parietal cortex(PPC)correlates with motor imagery EEG signal,this study joints movement-related potentials(MRPs)and the ERS/ERD features of mu/beta rhythm,in the first instance,wavelet packet decomposition(WPD)is proposed to reconstruct characteristic frequency band for feature vector of wavelet packet decomposition coefficients;moreover,spatial features vectors are extracted by common spatial patterns(CSP);in the end,support vector machine(SVM)as classifier is utilized to serve for predicting motor intention.Combining MRPs and mu/beta rhythm during motor imagery EEG signal,the classification accuracy is up to 85%.The result indicates that:1)the brain nerve mechanism of movement readiness and movement planning stages can be characterized by MRPs;2)the ERS/ERD features of mu/beta rhythm on low frequency components below 10 Hz carry information about intended movement direction.And the conclusions further offer a technological support for predicting meticulous movement intention including direction,speed and so on of movement parameters.

关 键 词:脑电信号 运动相关电位 事件相关同步/去同步 运动意图预测 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象