检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李静花 何常香[1] LI Jinghua;HE Changxiang(College of Science, University of Shanghai for Science and Technology, Shanghai 200093, Chin)
出 处:《上海理工大学学报》2018年第2期121-126,共6页Journal of University of Shanghai For Science and Technology
基 金:国家自然科学基金资助项目(11301340;11201303);上海市自然科学基金资助项目(12ZR1420300);沪江基金资助项目(B14005)
摘 要:将图的结构与对应的拉普拉斯矩阵相结合,研究其拉普拉斯特征多项式。根据拉普拉斯特征多项式的特征求出了图的拉普拉斯谱半径的极限点。利用图经粘连运算后的拉普拉斯特征多项式以及图的拉普拉斯谱半径的上界和下界,证明了三类图的拉普拉斯谱半径的极限点的存在性,证明了n→∞时图类的拉普拉斯谱半径是某方程的最大根。The Laplacian characteristic polynomials of the structures of graphs combined with corresponding Laplace matrices were studied. The limit points of the Laplacian spectral radii were provided according to the properties of Laplacian characteristic polynomials. For three types of graphs,the existence of limit points of the Laplacian spectral radii was proved and it was determined when n→∞, the Laplacian spectral radius of a graph is the largest root of certain equation by using some Laplacian characteristic polynomials of the graphs after coalescent operations and considering the upper and lower bounds of Laplacian spectral radii of the graphs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.57