一遍完成的平衡布点外存模型简化算法  被引量:2

Balanced Tilling Based Out-of-Core Simplification

在线阅读下载全文

作  者:蔡康颖[1] 王文成[1] 费广正 吴恩华[1] 

机构地区:[1]中国科学院软件研究所计算机科学重点实验室,北京100080 [2]日内瓦大学MIRALab

出  处:《计算机学报》2002年第9期936-944,共9页Chinese Journal of Computers

基  金:国家自然科学基金 (60 173 0 78;60 0 3 3 0 10 );澳门大学科研项目(RG0 12 /0 1-0 2 S/WEH/FST)资助

摘  要:现存的自适应采样的外存模型简化算法均需要多次读取原模型 ,算法效率较低 .该文给出一种仅仅需要读取原模型一遍的自适应顶点聚类算法——平衡布点算法 (Balanced Tilling,BT) ,用于外存模型简化 .其关键思想在于通过表面编码记录模型表面 ,通过对原模型的二次量化 (quadric quantization)得到原模型上的细节分布 .该算法可以定位出所有类型的细节区域 ,而其它一些算法只能定位细节边 .细节区域将被进一步细化 ,而平滑区域将被进一步简化 .该算法大大减少了输入输出时间 ,尤其适合处理超大规模模型 .内存需求很小 ,只与输出模型规模有关 .All the existing adaptable out-of-core simplification algorithms need to scan the original model more than one time. So the algorithm efficiency is relatively lower comparing with uniform sampling approaches. This paper presents an adaptive clustering method, called Balanced Tiling (BT), for out-of-core simplification, which only needs one pass over the input model. The main idea behind BT is that the model surface can be recorded using surface coding and the global distribution of surface details can be obtained through quadric quantizing of the original model. The algorithm presented in this paper can position all types of detail areas, while some other out-of-core simplification approaches can only position feature edges. The detail areas will be restored while smooth areas will be further simplified. BT especially suits handling super large models because the I/O time is saved greatly. The memory requirement is small, which is only related with the size of the output model.

关 键 词:平衡布点 外存模型简化算法 自适应顶点聚类 二次量化 表面编码 簇分裂 

分 类 号:TN919.81[电子电信—通信与信息系统] TP391.41[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象