机构地区:[1]Patuxent Wildlife Research Center, U.S. Geological Survey, Beltsville, MD 20705, USA [2]University of Maryland, College Park, MD 20742, USA [3]College of Nature Conservation, Beijing Forestry University, Beijing 100083, China [4]University of Virginia, Charlottesville, VA 22904, USA [5]Wetlands International Horapark9, Ede 6717 LZ, The Netherlands [6]Natural Systems Analysts, Winter Park, FL 32789, USA [7]Department of Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD 21250, USA
出 处:《Avian Research》2018年第1期49-62,共14页鸟类学研究(英文版)
基 金:supported by the United States Geological Survey(Ecosystems Mission Area);the National Science Foundation Small Grants for Exploratory Research(No.0713027);Wetlands International
摘 要:Background: A number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and extent desired, resulting in inefficient use of conservation resources.Such a situation presented itself in our attempt to develop waterfowl distribution models as part of a multi-disciplinary team targeting the control of the highly pathogenic H5N1 avian influenza virus in China.Methods: Faced with limited data, we built species distribution models using a habitat suitability approach for China's breeding and non-breeding(hereafter, wintering) waterfowl.An extensive review of the literature was used to determine model parameters for habitat modeling.Habitat relationships were implemented in GIS using land cover covariates.Wintering models were validated using waterfowl census data, while breeding models, though developed for many species, were only validated for the one species with sufficient telemetry data available.Results: We developed suitability models for 42 waterfowl species(30 breeding and 39 wintering) at 1 km resolution for the extent of China, along with cumulative and genus level species richness maps.Breeding season models showed highest waterfowl suitability in wetlands of the high-elevation west-central plateau and northeastern China.Wintering waterfowl suitability was highest in the lowland regions of southeastern China.Validation measures indicated strong performance in predicting species presence.Comparing our model outputs to China's protected areas indicated that breeding habitat was generally better covered than wintering habitat, and identified locations for which additional research and protection should be prioritized.Conclusions: These suitability models are the first available for many of China's waterfowl species, and have direct utility to conservation and habitat planning and prioritizing management of critically important areas, providing an example of how this approachBackground: A number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and extent desired, resulting in inefficient use of conservation resources.Such a situation presented itself in our attempt to develop waterfowl distribution models as part of a multi-disciplinary team targeting the control of the highly pathogenic H5N1 avian influenza virus in China.Methods: Faced with limited data, we built species distribution models using a habitat suitability approach for China's breeding and non-breeding(hereafter, wintering) waterfowl.An extensive review of the literature was used to determine model parameters for habitat modeling.Habitat relationships were implemented in GIS using land cover covariates.Wintering models were validated using waterfowl census data, while breeding models, though developed for many species, were only validated for the one species with sufficient telemetry data available.Results: We developed suitability models for 42 waterfowl species(30 breeding and 39 wintering) at 1 km resolution for the extent of China, along with cumulative and genus level species richness maps.Breeding season models showed highest waterfowl suitability in wetlands of the high-elevation west-central plateau and northeastern China.Wintering waterfowl suitability was highest in the lowland regions of southeastern China.Validation measures indicated strong performance in predicting species presence.Comparing our model outputs to China's protected areas indicated that breeding habitat was generally better covered than wintering habitat, and identified locations for which additional research and protection should be prioritized.Conclusions: These suitability models are the first available for many of China's waterfowl species, and have direct utility to conservation and habitat planning and prioritizing management of critically important areas, providing an exampl
关 键 词:ANATIDAE Avian influenza China Habitat suitability H5N1 Spatial analysis Species distribution models WATERFOWL
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...