一种利用振动响应识别裂纹转子参数的方法  

A Method Recognizing Parameters of a Cracked Rotor with Vibration Response

在线阅读下载全文

作  者:史宏昊 冯长水[1] SHI Hong-hao;FENG Chang-shui(School of Mechanical Engineering/Hangzhou Dianzi University, Hangzhou 310018, China)

机构地区:[1]杭州电子科技大学机械工程学院,浙江杭州310018

出  处:《山东农业大学学报(自然科学版)》2018年第3期523-527,共5页Journal of Shandong Agricultural University:Natural Science Edition

基  金:国家自然科学基金(11202061)

摘  要:针对一类含裂纹的转子动力学特性及其参数识别,本文选取裂纹转子刚度模型——中性轴模型,提出适用于对中性轴模型的裂纹转子运动微分方程的求解方法,并研究了裂纹转子系统参数对动力学的影响。然后,采用反向求解思路,用龙格-库塔法拆分迭代裂纹转子运动微分方程,通过平均值法确定基因算法中的适应度函数,从而实现裂纹转子参数识别问题向求解动力学响应差异值最小化的最值优化问题的转化,最终使用基因算法对最值优化问题求解,并通过算例对该方法进行了验证,实现了低于0.6%相对误差的裂纹转子参数识别。Aiming at dynamic characteristics and parameter identification of a kind of cracked rotor, the stiffness model ofthe cracked rotor-neutral axis model was choosed to propose a numerical solution method for differential equations ofcracked rotor under neutral axis model and study on the influence of parameters on dynamic characteristics of cracked rotorsystem. Then follow the inverse problem solution, the motion differential equation of cracked rotor was dismantled anditerated by using the Runge-Kutta method. The fitness function in genetic algorithm was obtained by using the average valuemethod. Thus the transformation from the parameter identification problem of crack rotor to the optimal problem solving theminimization of the dynamic response difference value so as to realize the cracked rotor parameter identification problemsolving the dynamic response to the most value optimization problem of minimizing the value difference. Finally, the geneticalgorithm was used to solve the optimal problem and the example was used to verify the method. The relative error fromparameter identification of the cracked rotor was realized below 0.6%.

关 键 词:裂纹转子 龙格-库塔 参数识别 基因算法 

分 类 号:TB123[理学—工程力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象