The relationships among aerosol optical depth, ice, phytoplankton and dimethylsulfide and the implication for future climate in the Greenland Sea  被引量:5

The relationships among aerosol optical depth, ice, phytoplankton and dimethylsulfide and the implication for future climate in the Greenland Sea

在线阅读下载全文

作  者:QU Bo GABRIC Albert J. ZHAO Li SUN Wenjing LI Hehe GU Peijuan JIANG Limei ZENG Meifang 

机构地区:[1]School of Science, Nantong University, Nantong 226019, China [2]School of Environment, Griffith University, Nathan, Qld 4111, Australia [3]Jurong Country Garden School, Zhenjiang 212400, China [4]Chinese Sinosoft Company Limited, Beijing 100190, China [5]Nanjing Kangni New Energy Auto Part Co., Ltd, Nanjing 210000, China [6]College of Basic Education, Nantong Institute of Technology, Nantong 226002, China [7]Primary School Department, Kunshan International School, Kunshan 215300, China

出  处:《Acta Oceanologica Sinica》2018年第5期13-21,共9页海洋学报(英文版)

基  金:The National Natural Science Foundation of China under contract No.41276097

摘  要:The sea-to-air flux of dimethylsulphide(DMS) is one of the major sources of marine biogenic aerosol, and can have an important radiative impact on climate, especially in the Arctic Ocean. Satellite-derived aerosol optical depth(AOD) is used as a proxy for aerosol burden which is dominated by biogenic aerosol during summer and autumn. The spring sea ice melt period is a strong source of aerosol precursors in the Arctic. However, high aerosol levels in early spring are likely related to advection of continental pollution from the south(Arctic haze).Higher AOD was generally registered in the southern part of the study region. Sea ice concentration(SIC) and AOD were positively correlated, while cloud cover(CLD) and AOD were negative correlation. The seasonal peaks of SIC and CLD were both one month ahead of the peak in AOD. There is a strong positive correlation between AOD and SIC. Melting ice is positively correlated with chlorophyll a(CHL) almost through March to September,but negatively correlated with AOD in spring and early summer. Elevated spring and early summer AOD most likely were influenced by combination of melting ice and higher spring wind in the region. The peak of DMS flux occurred in spring due to the elevated spring wind and more melting ice. DMS concentration and AOD were positively correlated with melting ice from March to May. Elevated AOD in early autumn was likely related to the emission of biogenic aerosols associated with phytoplankton synthesis of DMS. The DMS flux would increase more than triple by 2100 in the Greenland Sea. The significant increase of biogenic aerosols could offset the warming in the Greenland Sea.The sea-to-air flux of dimethylsulphide(DMS) is one of the major sources of marine biogenic aerosol, and can have an important radiative impact on climate, especially in the Arctic Ocean. Satellite-derived aerosol optical depth(AOD) is used as a proxy for aerosol burden which is dominated by biogenic aerosol during summer and autumn. The spring sea ice melt period is a strong source of aerosol precursors in the Arctic. However, high aerosol levels in early spring are likely related to advection of continental pollution from the south(Arctic haze).Higher AOD was generally registered in the southern part of the study region. Sea ice concentration(SIC) and AOD were positively correlated, while cloud cover(CLD) and AOD were negative correlation. The seasonal peaks of SIC and CLD were both one month ahead of the peak in AOD. There is a strong positive correlation between AOD and SIC. Melting ice is positively correlated with chlorophyll a(CHL) almost through March to September,but negatively correlated with AOD in spring and early summer. Elevated spring and early summer AOD most likely were influenced by combination of melting ice and higher spring wind in the region. The peak of DMS flux occurred in spring due to the elevated spring wind and more melting ice. DMS concentration and AOD were positively correlated with melting ice from March to May. Elevated AOD in early autumn was likely related to the emission of biogenic aerosols associated with phytoplankton synthesis of DMS. The DMS flux would increase more than triple by 2100 in the Greenland Sea. The significant increase of biogenic aerosols could offset the warming in the Greenland Sea.

关 键 词:dimethylsulfide flux sea ice chlorophyll aerosol optical depth Greenland Sea 

分 类 号:P732[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象