基于聚类神经网络的人体行为识别研究  

在线阅读下载全文

作  者:姜莹礁 

机构地区:[1]武警内蒙古总队,呼和浩特010100

出  处:《海峡科技与产业》2018年第1期68-69,75,共3页Technology and Industry Across the Straits

摘  要:本文提出了基于融合特征的聚类神经网络人体行为识别方法。采用了傅里叶描述子提取人体动作外形轮廓,利用外接矩形长宽比及变化率表征人体运动特征;提出了聚类分离度和紧密度相结合的Silhouette宽度,定义了训练参数目标误差为均方根误差RMS,采用改进的基于聚类的RBF神经网络进行行为识别。仿真实验表明,该方法能有效识别人体行为类别,应用效果满足实际要求。

关 键 词:背景差分 中心距 类内类间距离 均方根误差 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象