检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王镱嬴 刘洪[1] WANG Yiying;LIU Hong(School of Science,University of Science and Technology Liaoning,Anshan 114051,China)
出 处:《辽宁科技大学学报》2018年第1期75-80,共6页Journal of University of Science and Technology Liaoning
摘 要:空气中PM2.5浓度问题越来越受到各界的关注。根据PM2.5浓度数据的特征,首先选择ARIMA预测模型进行浓度预测;考虑到BP神经网络易陷入局部最小,而遗传算法具有全局搜索的能力,给出了遗传算法优化的BP神经网络预测模型;为了进一步提高预测精度,引入IOWGA算子,将ARIMA预测模型与遗传算法优化的BP神经网络预测模型相组合,给出了基于IOWGA算子的组合预测模型;最后经过实例仿真分析验证了模型的可行性和有效性,为PM2.5浓度预测提供基础资料。The problem of PM2.5 concentration in air is receiving more and more attention. First,according to the characteristics of PM2.5 concentration data,the ARIMA prediction model was used to forecast the PM2.5 concentration. Then,taking into account of the BP neural network easy to fall into the local minimum whereas the genetic algorithm has the capability of global search,the BP neural network model optimized by genetic algorithm was established. In order to further improve the prediction accuracy,through introducing IOWGA operator the ARIMA prediction model was combined with the BP neural network optimized by the genetic algorithm to form an IOWGA operator based prediction model. Finally,the feasibility and effectiveness of the combined model were verified by simulations of a practical case. The use of the prediction model provides basic references for the prediction of PM2.5 concentration.
关 键 词:PM2.5浓度 差分自回归移动平均模型 遗传算法 IOWGA算子 组合预测
分 类 号:N945.24[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117