检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张润驰 杜亚斌[1] ZHANG Run-chi,DU Ya-bin(Department of Finance,School of Business, Nanjing University, Nanjing 210093 ,Chin)
出 处:《系统工程》2017年第10期154-158,共5页Systems Engineering
基 金:国家自然科学基金重大研究计划项目(90718008);温州大学金融研究院招标金改研究项目(RH1206058)
摘 要:经典的加权k均值聚类算法能够有效区分不同属性对聚类过程的影响程度,但同时也易因权值的选取不当导致预测性能较差。本文在其基础上,针对信用评估问题,设计了多预测器粒子群优化加权k均值聚类(MPWKM)模型。MPWKM模型首先对样本数据进行预处理,剔除重要程度较低的属性,接着以粒子群算法搜索加权k均值聚类算法的最优权值组合,解决权值选择问题,进而构建多个基于不同样本空间子集的基预测器,最后根据各基预测器的预测结果组合成完整的预测模型,进一步提升模型的性能。实证研究表明:MPWKM模型与现有的五个成熟模型相比,在预测精度较高的同时,也具有较好的平衡性与稳定性。The classical weighted k-means clustering algorithm can effectively distinguish the impact of different attributes in the clustering process,but it tends to get a poor classification performance due to the improper selection of weights of each attribute.According,we design a multi-predictor particle swarm optimizing w-k-means clustering(MPWKM)model to solve credit evaluation problem.By using MPWKM model we firstly perform the pretreatment on the sample data to eliminate the less important attributes,then search the optimal weight combination of the weighted k-mean clustering algorithm by particle swarm optimization algorithm to solve the weight selection problem,and further construct several basic predictors based on the different subset of the original sample space.We finally construct the complete model according to the prediction accuracy of each basic predictor to further improve the performance of the model.Empirical study shows that the MPWKM model has high prediction accuracy,and better balance and stability compared with the existing five mature credit evaluation models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222