机构地区:[1]Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China [2]CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China [3]University of Chinese Academy of Sciences, Beijing 200049, China
出 处:《Chinese Journal of Chemistry》2018年第5期392-398,共7页中国化学(英文版)
摘 要:Spirofluorene (SF) and benzo[d][1,2,3]triazole (BTA) have been considered as promising building blocks to construct n-type photovoltaic materials. Herein, three new small molecule acceptors (SMAs) named BTA21, BTA23 and BTA27 with the structure of A2=A1-D-AI^A2 have been designed, in which SF and BTA were used as a central unit of D and bridged acceptor unit of A1, respectively. In addition, 3-ethylrhodanine, 2-(3-ethyl-4-oxothiazolidin-2-ylidene)malononitrile and malononitrile were chosen as terminal acceptor units to modulate the properties of the final SMAs. Three SMAs show wide optical band gaps (Eg) of 2.19, 2.15 and 2.22 eV, respectively, with gradually down-shift of the lowest unoccupied molecular orbital {LUMO) levels in the order of BTAZl, BTA23 and BTA27 depending on the electron-withdrawing capability of terminal acceptor units. BTA21 shows great advantages with respect to donor poly(3-hexylthiophene) (P3HT) over BTA23 and BTA27, such as well energy-level matching, complementary absorption and proper morpholgy, Concequently, P3HT:BTA21 shows the best power conversion efficiency (PCE) value of 3.28% with an open-circuit voltage (Voc) of 1.02 V, a short-circuit current (Jsc) of 5.45 mA.cm-2 and a fill factor (FF) of 0.59. These results indicate that the terminal acceptor group end-capped in SMAs plays a significant role in controlling their optical, electronic, and photovoltaic properties.Spirofluorene (SF) and benzo[d][1,2,3]triazole (BTA) have been considered as promising building blocks to construct n-type photovoltaic materials. Herein, three new small molecule acceptors (SMAs) named BTA21, BTA23 and BTA27 with the structure of A2=A1-D-AI^A2 have been designed, in which SF and BTA were used as a central unit of D and bridged acceptor unit of A1, respectively. In addition, 3-ethylrhodanine, 2-(3-ethyl-4-oxothiazolidin-2-ylidene)malononitrile and malononitrile were chosen as terminal acceptor units to modulate the properties of the final SMAs. Three SMAs show wide optical band gaps (Eg) of 2.19, 2.15 and 2.22 eV, respectively, with gradually down-shift of the lowest unoccupied molecular orbital {LUMO) levels in the order of BTAZl, BTA23 and BTA27 depending on the electron-withdrawing capability of terminal acceptor units. BTA21 shows great advantages with respect to donor poly(3-hexylthiophene) (P3HT) over BTA23 and BTA27, such as well energy-level matching, complementary absorption and proper morpholgy, Concequently, P3HT:BTA21 shows the best power conversion efficiency (PCE) value of 3.28% with an open-circuit voltage (Voc) of 1.02 V, a short-circuit current (Jsc) of 5.45 mA.cm-2 and a fill factor (FF) of 0.59. These results indicate that the terminal acceptor group end-capped in SMAs plays a significant role in controlling their optical, electronic, and photovoltaic properties.
关 键 词:BENZOTRIAZOLE organic photovoltaic P3HT small molecular acceptor wide band gap
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...