检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贺平平 李香丹[1] 王磊[2] 王浩[2] HE Ping-ping;LI Xiang-dan;WANG Lei;WANG Hao(Key Laboratory of Chemistry and Materials Science of the State Ethnic Affairs Commission l~Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China;CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscienee and Technology (NCNST), Beiiing ]00190, China)
机构地区:[1]中南民族大学催化材料科学国家民委-教育部重点实验室,湖北武汉430074 [2]国家纳米科学中心纳米生物效应与安全性重点实验室,北京100190
出 处:《分子科学学报》2018年第2期89-102,共14页Journal of Molecular Science
基 金:国家自然科学基金资助项目(51573031,21374026和51573032)
摘 要:由于预自组装纳米材料的超结构和性能在复杂的生理状态下会发生变化,我们提出了一种新的“体内自组装”策略.即在体内原位构筑自组装纳米材料来代替预组装纳米材料.为了实现和研究体内自组装,开发了双芘建筑模块,该建筑模块组装成纳米材料时伴随着荧光的增强,可用于“观察”自组装过程及最终的自组装纳米材料.本文总结了双芘建筑模块用于体内自组装的优势,系统地介绍了体内自组装的策略.同时探讨了基于体内自组装和转化的双芘材料的生物效应和诊断治疗应用,并展望了双芘自组装纳米材料的未来发展前景.The self-assembled nanomaterials show potential high-efficiency as theranostics agents for high-performance imaging and treatment. However, the superstructures and properties of pre-assem- bled nanomaterials compromise in complicated physiological conditions. We proposed a new strategy of "in vivo self-assembly" to in situ construct self-assembled nanomaterials in vivo instead of uncon- trollable changes of self-assembled nanomaterials. In order to achieve and investigate the in vivo self- assembly, we developed the building block of bis-pyrene, which was hydrophobic molecule and self- assembled into nanoparticles (NPs) with bright emission. The hydrophobicity and π-π interactions in- duced self-assembly in water, and the self-assembled nano-emitters could provide signals to "observe" the self-assembly process and the self-assemblies in vitro and in vivo. In this review, we summarized advantages of the bis-pyrene building block for in vivo self-assembly. More importantly, the strate- gies for "in vivo self-assembly" were systematically introduced. The new biological effect and applica- tion for diagnosis and therapy based on in situ construction and transformation of bis-pyrene based on materials in vivo were discussed. We finally concluded with an outlook towards future developments of bis-pyrene self-assembled nanomaterials.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3