检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙晋美[1] 张兴波[1] 张霞[1] SUN Jin-mei, ZHANG Xing-bo, ZHANG Xia(Qindao College, Qingdao Technological University, Qingdao 266106, Chin)
出 处:《煤矿机械》2018年第5期147-149,共3页Coal Mine Machinery
摘 要:采用概率神经网络对数控机床滚珠丝杠副的故障状态进行模式识别。首先对数控机床的故障类型及诊断方法进行了介绍,重点介绍了滚珠丝杠副的故障类型和诊断方法;然后基于概率神经网络在模式识别上的广泛应用,结合MATLAB软件对滚珠丝杠副的工作状态信息进行了模式识别,通过有限样本的网络训练和识别测试,验证了概率神经网络在滚珠丝杠副故障诊断中的准确性和适用性。Probabilistic neural network is applied to pattern recognition for the fault state of ball screw movement pair of CNC machine tools. First, the fault types and diagnosis methods of CNC machine tools are introduced, and the introduction focused on fault types and diagnosis methods of ball screw movement pair. Based on the widespread application of probabilistic neural network in pattern recognition and MATLAB software,the working state information of ball screw movement pair is identified,and the limited sample is used,the network training and recognition test verified the accuracy and applicability of probabilistic neural network in fault diagnosis of ball screw movement pair.
分 类 号:TG659[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222