检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庄玉册 赵莉苹 ZHUANG Yu-ce1, ZHAO Li-ping2(1 . Xinyang University, College of Mathematics and Information, Xinyang Henan 464000, China; 2. School of Mechanical and Telecommunications Engineering, Zhengzhou Technology and Business University, Zhengzhou Henan 451400, Chin)
机构地区:[1]信阳学院数学与信息学院,河南信阳464000 [2]郑州工商学院机械与信息工程学院,河南郑州451400
出 处:《计算机仿真》2018年第5期322-325,共4页Computer Simulation
摘 要:对运动图像模糊区域边界去噪,能够有效提高视频运动图像整体视觉效果。对运动图像模糊区域的优化降噪,首先需要提取每个集群的低频和高频特征,对不同类型像素特征向量进行聚类,完成运动图像模糊区域的优化降噪。传统方法计算运动图像的粗阚值,给出图像域统计特性近似高斯分布的特点,但忽略了对像素特征向量的聚类,导致图像降噪效果不理想。提出基于小波变换的运动图像模糊区域边界优化降噪方法。对图像进行平滑预处理,将图像划分为多个超像素,对各个超像素增加类别标志,形成不同像素的类别集群,采用小波变换提取每个集群的低频和高频特征,利用模糊均值方法对不同类型像素特征向量进行聚类,完成运动图像模糊区域边界优化降噪。仿真证明,所提方法图像模糊区域边界优化降噪精度较高,有效地完善了模糊区域边界优化降噪图像的视觉效果。Reducing the noise from blurred region boundary of motion image can effectively improve the overall visual effect of motion image. In traditional methods, the clustering of feature vectors of pixel is ignored, which results in unideal denoising effect. This article presents a method for reducing the noise in boundary of blurred region of motion image based on wavelet transform. The smooth preprocessing of image is carried out, and the image is divided into a plurality of super pixels. Then, the class indicator is added on each super pixel, and category clusters of different pixels are formed. Moreover, the wavelet transform is used to extract low frequency and high frequency characteristics of each cluster, and the fuzzy means method is used to cluster different types of pixel feature vectors. Thus, the noise reduction of blurred region boundary in image is completed. Simulation shows that the proposed method has high accuracy of optimization and noise reduction of blurred region boundary in image.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3