检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴志军 刘亮 岳猛 WU Zhijun;LIU Liang;YUE Meng(School of Electronics Information & Automation, Civil Aviation University of China,Tianjin 300300, Chin)
机构地区:[1]中国民航大学电子信息与自动化学院,天津300300
出 处:《通信学报》2018年第5期11-22,共12页Journal on Communications
基 金:国家自然基金委员会与中国民航局联合基金资助项目(No.U1533107);天津市自然科学基金资助项目(No.17JCZDJC30900)~~
摘 要:低速率拒绝服务(LDoS,low-rate denial of service)攻击是一种新的面向TCP协议的攻击方式,它具有攻击速率低、隐蔽性强的特点,很难被传统DoS攻击检测措施发现。针对其特点,采用网络大数据分析技术,从路由器队列中挖掘一种LDoS攻击特征,将核主成分分析(KPCA,kernel principal component analysis)方法与神经网络结合,提出一种新的检测LDoS攻击的方法。该方法将路由器队列特征采用KPCA降维,作为神经网络输入,再利用BP神经网络自学习能力生成LDoS分类器,达到检测LDoS攻击的目的。实验结果表明该方法有较好的检测有效性和较低的计算复杂度,对设计防御LDoS攻击的路由器有一些借鉴意义。Low-rate denial-of-service(LDoS) attack is a new type of attack mode for TCP protocol. Characteristics of low average rate and strong concealment make it difficult for detection by traditional Do S detecting methods. According to characteristics of LDoS attacks, a new LDoS queue future was proposed from the router queue, the kernel principal component analysis(KPCA) method was combined with neural network, and a new method was present to detect LDoS attacks. The method reduced the dimensionality of queue feature via KPCA algorithm and made the reduced dimension data as the inputs of neural network. For the good sell-learning ability, BP neural network could generate a great LDoS attack classifier and this classifier was used to detect the attack. Experiment results show that the proposed approach has the characteristics of effectiveness and low algorithm complexity, which helps the design of high performance router.
关 键 词:低速率拒绝服务攻击 队列特征 核的主成分分析 神经网络
分 类 号:TP302[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222