检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhi-Tao WEN Roderick WONG Shuai-Xia XU Zhi-Tao WEN;Roderick WONG;Shuai-Xia XU(Department of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China;Liu Bie Ju Centre for Mathematical Sciences,City University of Hong Kong,Hong Kong,China;Institut Franco-Chinois de l’Energie Nucleaire,Sun Yat-sen University,Guangzhou 510275,China)
机构地区:[1]Department of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China [2]Liu Bie Ju Centre for Mathematical Sciences,City University of Hong Kong,Hong Kong,China [3]Institut Franco-Chinois de l’Energie Nucleaire,Sun Yat-sen University,Guangzhou 510275,China
出 处:《Chinese Annals of Mathematics,Series B》2018年第3期553-596,共44页数学年刊(B辑英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.11771090,11571376)
摘 要:In this paper, the authors consider the asymptotic behavior of the monic polynomials orthogonal with respect to the weight function w(x) = /x/2αe-(x4+tx2), x ∈R, where α is a constant larger than - 1/2 and t is any real number. They consider this problem in three separate cases: (i) c 〉 -2, (ii) c = -2, and (iii) c 〈 -2, where c := tN-1/2 is a constant, N = n + a and n is the degree of the polynomial. In the first two cases, the support of the associated equilibrium measure μ is a single interval, whereas in the third case the support of μt consists of two intervals. In each case, globally uniform asymptotic expansions are obtained in several regions. These regions together cover the whole complex plane. The approach is based on a modified version of the steepest descent method for Riemann-Hilbert problems introduced by Deift and Zhou (1993).
关 键 词:Orthogonal polynomials Globally uniform asymptotics Riemann-Hilbertproblems The second Painlev6 transcendent Theta function
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166