检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁亚辉 孙玉发[1] 朱金玉 Ding Ya-Hui, Sun Yu-Fa, Zhu Jin-Yu(School of Electronics and Information Engineering, Anhui University, Hefei 230601, Chin)
出 处:《物理学报》2018年第10期1-6,共6页Acta Physica Sinica
摘 要:提出了一种将压缩感知和特征基函数结合的方法来计算三维导体目标的雷达散射截面.利用压缩感知理论,将随机选择的矩量法阻抗矩阵作为测量矩阵,将激励电压视为测量值,然后再用恢复算法可实现二维或二维半目标感应电流的求解.对于三维导体目标,使用Rao-Wilton-Glisson基函数表示的感应电流在常用的离散余弦变换基、小波基等稀疏基上不稀疏.为此,本文将计算出的目标特征基函数作为稀疏基,用广义正交匹配追踪算法作为恢复算法来加速恢复过程,并应用到三维导体目标的雷达散射截面计算中.数值结果证明了本文方法的准确性与高效性.The method of moments is one of the most commonly used algorithms for analyzing the electromagnetic scattering problems of conductor targets. However, it is difficult to solve the matrix equation when analyzing the electromagnetic scattering problem of the electric large target. In recent years, the theory of the compressed sensing was introduced into the method of moments to improve the computation efficiency. The random selected impedance matrix is used as a measurement matrix, and the excitation voltage is used as a measurement value when using compressed sensing theory.The recovery algorithm is used to solve the induced current of target. The method can avoid the inverse problem of matrix equation and improve the computational efficiency of the method of moments, but it can be applied only to2-dimensional or 2.5-dimensional target. The application of compressed sensing needs to know the sparse basis of the current in advance, but the induced current of three-dimensional target which is expressed by an Rao-Wilton-Glisson basis function is not sparse on the commonly used sparse basis, such as discrete cosine transform basis and discrete wavelet basis. To solve this problem, a method of combining compressed sensing with characteristic basis functions is proposed to analyze the electromagnetic scattering problem of three-dimensional conductor target in this paper. The characteristic basis function method is an improved method of moments. The target is divided into several subdomains, the main characteristic basis functions are comprised of current bases arising from the self-interactions within the subdomain, and the secondary characteristic basis functions are obtained from the mutual coupling effects of the rest of the subdomains.Then a reduction matrix is constructed to reduce the order of matrix equation, and the current can be expressed by the characteristic basis function and its weighting coefficient. In the method presented in this paper, the weighting coefficient is considered as a sparse vector to be so
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.90.123