机构地区:[1]Microbial Ecology, Department of Biology, Ecology Building, Lund University, Lund SE-223 62 (Sweden) [2]Department of Environmental Sciences, Savitribai Phule Pune University, Pune 411007 (India)
出 处:《Pedosphere》2018年第2期255-260,共6页土壤圈(英文版)
基 金:supported by an Erasmus Mundi grant to the first author, Dr.Pramod N.Kamble
摘 要:Microbial growth in soil is mostly limited by lack of carbon (C). However, adding fresh, C-rich litter can induce nitrogen (N) limitation. We studied the effect of alleviating C and N limitation in high-pH (> 8) soils, soils expected to favor bacterial over fungal growth. Nitrogen limitation was induced by incubating soils amended with C-rich substrate (starch or straw) for 4 weeks. Limiting nutrients and the effects of alleviating limitation were then studied by adding C (as glucose) or N (as NH_4NO_3) and measuring microbial growth and respiration after 4 d. In non-amended, C-limited soils, adding C but not N increased both microbial respiration and bacterial growth. In N-limited, substrate-amended soils, adding C increased respiration, whereas adding N increased both microbial respiration and growth. Inducing N limitation by amending with straw was most easily detected in increased fungal growth after the addition of N, whereas with starch, only bacterial growth responded to alleviating N limitation. Compared to earlier results using a low-pH soil, the effect of substrate used to induce N limitation was more important than pH for inducing bacterial or fungal growth after alleviating N limitation. Furthermore, we found no evidence that alleviating N limitation resulted in decreased respiration concomitant with increased microbial growth in soil, suggesting no drastic changes in C use efficiency.Microbial growth in soil is mostly limited by lack of carbon (C). However, adding fresh, C-rich litter can induce nitrogen (N) limitation. We studied the effect of alleviating C and N limitation in high-pH (> 8) soils, soils expected to favor bacterial over fungal growth. Nitrogen limitation was induced by incubating soils amended with C-rich substrate (starch or straw) for 4 weeks. Limiting nutrients and the effects of alleviating limitation were then studied by adding C (as glucose) or N (as NH_4NO_3) and measuring microbial growth and respiration after 4 d. In non-amended, C-limited soils, adding C but not N increased both microbial respiration and bacterial growth. In N-limited, substrate-amended soils, adding C increased respiration, whereas adding N increased both microbial respiration and growth. Inducing N limitation by amending with straw was most easily detected in increased fungal growth after the addition of N, whereas with starch, only bacterial growth responded to alleviating N limitation. Compared to earlier results using a low-pH soil, the effect of substrate used to induce N limitation was more important than pH for inducing bacterial or fungal growth after alleviating N limitation. Furthermore, we found no evidence that alleviating N limitation resulted in decreased respiration concomitant with increased microbial growth in soil, suggesting no drastic changes in C use efficiency.
关 键 词:ACETATE incorporation into ERGOSTEROL carbon use efficiency LEUCINE incorporation limiting nutrient MICROBIAL growth MICROBIAL RESPIRATION N LIMITATION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...