Right Lateral Shear and Rotation in the Northeast of the Arabian-Iranian Collision Zone  被引量:1

Right Lateral Shear and Rotation in the Northeast of the Arabian-Iranian Collision Zone

在线阅读下载全文

作  者:Arash Barjasteh 

机构地区:[1]Deputy for Dam and Power Plant Development, Khuzestan Water and Power Authority

出  处:《Journal of Earth Science》2018年第3期616-628,共13页地球科学学刊(英文版)

摘  要:Accommodation of continental convergence by crustal thickening and lateral transport is mainly featured as strike-slip faulting along the trends roughly orthogonai to the orientation of plate convergence. This style of faulting will affect seismicity of the involving areas which can be proved in low seismic zones by determining regional stress pattern using numerical methods. Accordingly, the stress distribution and deformation pattern of the South Sanandaj-Sirjan zone in the northeastern part of the Iranian-Arabian collision zone is investigated here using a three dimen-sional mechanical model. The modeled area is bounded between the Zagros thrust fault on the west and Dehshir-Baft fault in the east. The model is composed of three layers: the upper two layers represent the upper brittle and lower ductile crust of the collided continent and the lowest layer represents the lithospheric mantle. The upper crust behaves as an elastic material while the lower crust is considered as a non-Newtonian viscous fluid layer. The lithospheric mantle is taken as a low-viscosity material which is not allowed to move in any direction relative to the overlying layers. The Zagros thrust fault was treated with two different dip values saying 90° and 45° but Dehshir-Baft fault was modeled as a vertical fault and allowed to have a dextral movement regarding to the existing evidence. The driving mechanism applied to the western side of the model was chosen considering two different approaches including a kinematic approach (the Arabian-Eurasian convergence velocity; 35 mm/yr) and a dynamic approach (an external boundary force equal to 3.55E+17 N). The resulted stress field indicates an orogen-parallel component of right lateral shear along the Zagros fault implying a rotational deformation pattern within the modeled region that suggests a stress partitioning in the study area. The pattern also indicates a stress accumulation towards the south which could be a reason for the regional seismic quiescence between the two seiAccommodation of continental convergence by crustal thickening and lateral transport is mainly featured as strike-slip faulting along the trends roughly orthogonai to the orientation of plate convergence. This style of faulting will affect seismicity of the involving areas which can be proved in low seismic zones by determining regional stress pattern using numerical methods. Accordingly, the stress distribution and deformation pattern of the South Sanandaj-Sirjan zone in the northeastern part of the Iranian-Arabian collision zone is investigated here using a three dimen-sional mechanical model. The modeled area is bounded between the Zagros thrust fault on the west and Dehshir-Baft fault in the east. The model is composed of three layers: the upper two layers represent the upper brittle and lower ductile crust of the collided continent and the lowest layer represents the lithospheric mantle. The upper crust behaves as an elastic material while the lower crust is considered as a non-Newtonian viscous fluid layer. The lithospheric mantle is taken as a low-viscosity material which is not allowed to move in any direction relative to the overlying layers. The Zagros thrust fault was treated with two different dip values saying 90° and 45° but Dehshir-Baft fault was modeled as a vertical fault and allowed to have a dextral movement regarding to the existing evidence. The driving mechanism applied to the western side of the model was chosen considering two different approaches including a kinematic approach (the Arabian-Eurasian convergence velocity; 35 mm/yr) and a dynamic approach (an external boundary force equal to 3.55E+17 N). The resulted stress field indicates an orogen-parallel component of right lateral shear along the Zagros fault implying a rotational deformation pattern within the modeled region that suggests a stress partitioning in the study area. The pattern also indicates a stress accumulation towards the south which could be a reason for the regional seismic quiescence between the two sei

关 键 词:Zagros thrust fault Sanandaj-Sirjan belt numerical modeling shear zone Eghlid-Deh Bid. 

分 类 号:P315[天文地球—地震学] P542[天文地球—固体地球物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象