一类半离散非线性时滞种群模型的稳定性  

Stability of a Semi-Discrete Non-Linear Delay Population Model

在线阅读下载全文

作  者:朱婉珍[1] 沈自飞[2] ZHU Wan-zhen;SHEN Zi-fei(School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China;Department of Mathematics Zhejiang Normal University, Jinhua 321004, China)

机构地区:[1]浙江科技学院理学院,浙江杭州310023 [2]浙江师范大学数学系,浙江金华321004

出  处:《数学的实践与认识》2018年第11期316-320,共5页Mathematics in Practice and Theory

基  金:浙江省自然科学基金(LY17A010009);浙江科技学院科研基金(F701108G14)

摘  要:自然界的物种不是孤立存在的,考虑外来物种对种群的影响,增加一个额外的强迫力τ(t)是符合实际的.推导了一个带常数扰动项的半离散非线性时滞种群模型,研究了它的稳定性.研究结果显示,模型的零解为鞍点,而在某些参数条件下,模型的正平衡点具有局部渐进稳定性.Species in nature are not isolated existed, Considering the impact of alien species on the population, it is practical to add an additional force. In this paper, a semi-discrete non- linear delay population model with constant disturbance term is deduced. And its stability is studied. The study results show that the zero solution of this system is saddle point, but under certain parameters, the positive fixed point of this system is locally asymptotically stable.

关 键 词:非线性时滞差分方程 扰动 稳定性 种群动力学 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象