The Automorphism Group of a Class of Nilpotent Groups with Infinite Cyclic Derived Subgroups  

The Automorphism Group of a Class of Nilpotent Groups with Infinite Cyclic Derived Subgroups

在线阅读下载全文

作  者:He Guo LIU Yu Lei WANG Ji Ping ZHANG 

机构地区:[1]Department of Mathematics, Hubei University, Wuhan 430062, P. R. China [2]Department of Mathematics, Henan University of Technology, Zhengzhou 450001, P. R. China [3]The School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2018年第7期1151-1158,共8页数学学报(英文版)

基  金:Supported by NSFC(Grant Nos.11771129 and 11601121);Henan Provincial Natural Science Foundation of China(Grant No.162300410066);Program for Innovation Talents of Science and Technology of Henan University of Technology(Grant No.11CXRC19)

摘  要:The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial E-group E and a free abelian group A with rank m, where E={{1 kα1 kα2…kαn aα+1 0 1 0 … 0 αn+2 0 0 0 … 1 α2n+1 0 0 0 …0 1}}αi∈Z,i=1,2,…,2n+1},where k is a positive integer. Let AutG'G be the normal subgroup of AutG consisting of all elements of AutG which act trivially on the derived subgroup G' of G, and Autc G/ζG,ζGG be the normal subgroup of AutG consisting of all central automorphisms of G which also act trivially on the center ζG of G. Then (i) The extension →AutG'G→AutG→AutG'→1 is split.(ii)AutG'G/AutG/ζG,ζGG≈Sp(2n,Z)×(GL(m,Z)×(Z)m),(iii)Aut GζG,ζGG/InnG≈(Zk)2n+(Z)2nm.The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial E-group E and a free abelian group A with rank m, where E={{1 kα1 kα2…kαn aα+1 0 1 0 … 0 αn+2 0 0 0 … 1 α2n+1 0 0 0 …0 1}}αi∈Z,i=1,2,…,2n+1},where k is a positive integer. Let AutG'G be the normal subgroup of AutG consisting of all elements of AutG which act trivially on the derived subgroup G' of G, and Autc G/ζG,ζGG be the normal subgroup of AutG consisting of all central automorphisms of G which also act trivially on the center ζG of G. Then (i) The extension →AutG'G→AutG→AutG'→1 is split.(ii)AutG'G/AutG/ζG,ζGG≈Sp(2n,Z)×(GL(m,Z)×(Z)m),(iii)Aut GζG,ζGG/InnG≈(Zk)2n+(Z)2nm.

关 键 词:Generalized extraspecial Z-group symplectic group automorphism group 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象