机构地区:[1]School of Chemical Engineering, Northwest University [2]The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University
出 处:《Chinese Journal of Polymer Science》2018年第5期612-619,共8页高分子科学(英文版)
基 金:financially supported by the Postdoctoral Science Foundation of China (No.2014M560802);the Natural Science Foundation of Education Department of Shaanxi Provincial Government (No.16JK1755);the State Key Laboratory of Chemical Engineering (No.SKL-ChE-16A04)
摘 要:Cu(OH)2 nanowires were prepared and incorporated into poly(vinylidene fluoride)(PVDF) to fabricate Cu(OH)2-PVDF ultrafiltration(UF) membrane via immersion precipitation phase inversion process. The effect of Cu(OH)2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy(XPS), Fourier transform infrared(FTIR) spectroscopy, atomic force microscopy(AFM), scanning electron microscopy(SEM) and X-ray diffraction(XRD) measurements. The results showed that all the Cu(OH)2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity, smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)2 nanowires. In addition, water flux and bovine serum albumin(BSA) rejection were also measured to investigate the filtration performance of membranes. The results indicated that all the Cu(OH)2-PVDF membranes had high water flux, outstanding BSA rejection and excellent antifouling properties. It is worth mentioning that the optimized performance could be obtained when the Cu(OH)2 nanowires content reached 1.2 wt%. Furthermore, the membrane with 1.2 wt% Cu(OH)2 nanowires showed outstanding oil-water emulsion separation capability.Cu(OH)2 nanowires were prepared and incorporated into poly(vinylidene fluoride)(PVDF) to fabricate Cu(OH)2-PVDF ultrafiltration(UF) membrane via immersion precipitation phase inversion process. The effect of Cu(OH)2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy(XPS), Fourier transform infrared(FTIR) spectroscopy, atomic force microscopy(AFM), scanning electron microscopy(SEM) and X-ray diffraction(XRD) measurements. The results showed that all the Cu(OH)2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity, smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)2 nanowires. In addition, water flux and bovine serum albumin(BSA) rejection were also measured to investigate the filtration performance of membranes. The results indicated that all the Cu(OH)2-PVDF membranes had high water flux, outstanding BSA rejection and excellent antifouling properties. It is worth mentioning that the optimized performance could be obtained when the Cu(OH)2 nanowires content reached 1.2 wt%. Furthermore, the membrane with 1.2 wt% Cu(OH)2 nanowires showed outstanding oil-water emulsion separation capability.
关 键 词:Cu(OH)2 nanowires PVDF UF membrane Oil-Water emulsion separation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...